scholarly journals Pembuatan Cetakan Pasir Dan Proses Pemesinan Untuk Komponen Blok Pompa Pada Mesin Pompa Air Merk Matrix Model Mtx-22c

2019 ◽  
Vol 11 (2) ◽  
pp. 47-50
Author(s):  
Firdaus Firdaus ◽  
Rakiman Rakiman ◽  
Nota Effiandi ◽  
Yuli Yetri

Reverse Engineering (RE) is a process in manufacturing that aims to reproduce or recreate existing models, either components, sub-components, or products without using existing design documents or working drawings. Through this reverse engineering idea, the process of making the Pump Block component is started with making part and mold design, making sand casting, then finished with machining processes. The machining process that is carried out is the turning process, the milling process, and the drilling process which is assisted by using jigs and fixture to make it easier on finishing the Pump Block parts in the machining process. By using the processes, so it is produced the similar pump block that is resemble with desired original object.

2020 ◽  
Vol 87 (12) ◽  
pp. 757-767
Author(s):  
Robert Wegert ◽  
Vinzenz Guski ◽  
Hans-Christian Möhring ◽  
Siegfried Schmauder

AbstractThe surface quality and the subsurface properties such as hardness, residual stresses and grain size of a drill hole are dependent on the cutting parameters of the single lip deep hole drilling process and therefore on the thermomechanical as-is state in the cutting zone and in the contact zone between the guide pads and the drill hole surface. In this contribution, the main objectives are the in-process measurement of the thermal as-is state in the subsurface of a drilling hole by means of thermocouples as well as the feed force and drilling torque evaluation. FE simulation results to verify the investigations and to predict the thermomechanical conditions in the cutting zone are presented as well. The work is part of an interdisciplinary research project in the framework of the priority program “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).This contribution provides an overview of the effects of cutting parameters, cooling lubrication and including wear on the thermal conditions in the subsurface and mechanical loads during this machining process. At first, a test set up for the in-process temperature measurement will be presented with the execution as well as the analysis of the resulting temperature, feed force and drilling torque during drilling a 42CrMo4 steel. Furthermore, the results of process simulations and the validation of this applied FE approach with measured quantities are presented.


2021 ◽  
pp. 113-124
Author(s):  
Nhu-Tung Nguyen ◽  
Do Duc Trung

Surface roughness that is one of the most important parameters is used to evaluate the quality of a machining process. Improving the accuracy of the surface roughness model will contribute to ensure an accurate assessment of the machining quality. This study aims to improve the accuracy of the surface roughness model in a machnining process. In this study, Johnson and Box-Cox transformations were successfully applied to improve the accuracy of surface roughness model when turning 3X13 steel using TiAlN insert. Four input parameters that were used in experimental process were cutting velocity, feed rate, depth of cut, and insert-nose radius. The experimental matrix was designed using Central Composite Design (CCD) with 29 experiments. By analyzing the experimental data, the influence of input parameters on surface roughness was investigated. A quadratic model was built to explain the relationship of surface roughness and the input parameters. Box-Cox and Johnson transformations were applied to develop two new models of surface roughness. The accuracy of three surface roughness models showed that the surface roughness model using Johnson transformation had the highest accuracy. The second one model of surface roughness is the model using Box-Cox transformation. And surface roughness model without transformation had the smallest accuracy. Using the Johnson transformation, the determination coefficient of surface roughness model increased from 80.43 % to 84.09 %, and mean absolute error reduced from 19.94 % to 16.64 %. Johnson and Box-Cox transformations could be applied to improve the acuaracy of the surface roughness prediction in turning process of 3X13 steel and can be extended with other materials and other machining processes


This paper presents the optimization in machining processes on the cutting parameters for the S45C in turning process using the response surface method (RSM). The experimental work conducted investigates the influence of cutting parameters on statistical analysis of signals and surface quality. The paper also presents a statistical analysis of signal processing. The cutting force was measured during machining using the Kistler 9129AA dynamometer to monitor the force signals and the data was analyzed using the I-kazTM method of statistical analysis. This statistical analysis was used to assess the effect of force signals during the machining process. The RSM models for Ra and Rz, and Ideveloped with ANOVA and multiple regression equations. The models also were compared and validated with the predicted and measured of Ra and Rz values, and I-kaz coefficients. The optimal configuration of cutting parameters was observed at 200 m/min, 0.1 mm/rev and 0.521 mm with desirability of 95.9%. It is observed that the models developed are suggested to be utilized for predicting surface roughness values and I-kaz coefficients for the machining of S45C steel.


2015 ◽  
Vol 809-810 ◽  
pp. 33-38 ◽  
Author(s):  
Ştefan Adrian Moldovan ◽  
Vasile Năsui

In this paper we present a technological problem encountered in the machining accuracy of the parts for aerospace made of aluminum alloy extruded profile with length up to 10 meters. Those parts have very tight tolerances and on milling process appear several factors that influence the repeatability of machining processes, the main one being the thermal expansion effect.


Author(s):  
Ahmet Dogrusadik

Thread milling is a new machining process as compared to thread tapping. As a thread making process in use for a long time, thread tapping did not have any alternative processes except the thread turning for limited cases until computer numerical control (CNC) technology had enabled the three axes synchronized motion. Therefore, investigations about the thread milling process are less as compared to other machining processes. In this work, the thread profile in the internal thread milling process was derived analytically. Experimental work was also performed to verify the performance of the analytical model. It was revealed that the thread profile produced by the cutting edge of the tool is not a straight line but a curve, and the average slope through the thread profile is less than the slope of the cutting edge of the tool. Besides, the effective thread profile enlarges along the vertical axis and constricts laterally as the ratio of thread mill diameter to thread diameter increases.


2015 ◽  
Vol 766-767 ◽  
pp. 914-920
Author(s):  
V. Sivaraman ◽  
S. Prakash

In the modern competitive scenario in manufacturing industries, producing products with low cost, less time and good quality are the ultimate goal of any manufacturer. To achieve the goal, several optimization tools are developed to optimize the process parameters of the machining process. Turning is one of the machining processes that cannot be avoided in any manufacturing industries. In this review, optimization of process parameters in turning process by computational intelligence (CI) paradigms for the past ten years is studied. Optimization by CI paradigms such as Fuzzy System (FS), Evolutionary Computation techniques Genetic Algorithm (GA), Swarm Intelligence including Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Neural Networks (ANN) etc., is considered. In turning process, surface roughness, tool wear, production time and cost are optimized.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5326
Author(s):  
Andrés Sio-Sever ◽  
Erardo Leal-Muñoz ◽  
Juan Manuel Lopez-Navarro ◽  
Ricardo Alzugaray-Franz ◽  
Antonio Vizan-Idoipe ◽  
...  

This work presents a non-invasive and low-cost alternative to traditional methods for measuring the performance of machining processes directly on existing machine tools. A prototype measuring system has been developed based on non-contact microphones, a custom designed signal conditioning board and signal processing techniques that take advantage of the underlying physics of the machining process. Experiments have been conducted to estimate the depth of cut during end-milling process by means of the measurement of the acoustic emission energy generated during operation. Moreover, the predicted values have been compared with well established methods based on cutting forces measured by dynamometers.


Author(s):  
Saeid Amini ◽  
Mohammad Baraheni ◽  
Mohammad Khaki

Turn-milling process has been paid attention in order to be used in multi-task machining processes. Moreover, looking for new machining techniques aimed at reducing cutting force is of important. Reducing cutting force in machining processes has the benefits of extending tool life and improving surface quality. One of the new concepts for reducing the cutting force is applying ultrasonic vibration. In this paper, effects of ultrasonic vibration under different machining parameters in turn-milling process of Al-7075 alloy will be investigated. In this order, a special mechanism was designed to apply ultrasonic vibration during machining process. Ultrasonic vibration exertion on the tool reduced cutting force and surface roughness up to 75% and 35%, respectively. Also tool rotational speed increment induced cutting force and surface roughness increment. In addition, tool feed rate and workpiece rotational speed increment caused cutting force and surface roughness increment. Although, feed rate was more influential.


2001 ◽  
Author(s):  
Rodolfo E. Haber Guerra ◽  
Rodolfo Haber Haber ◽  
Angel Alique ◽  
Clodeinir R. Peres ◽  
Salvador Ros

Abstract The nonlinear behavior and complexity of machining processes have motivated researchers to use fuzzy model to effect process supervision. The main idea of this paper concerns the application of fuzzy logic and clustering techniques to develop a fuzzy model of the milling process aiming at the optimization of machine-tool performance and the overall machining process. A brief description of the algorithm employed is given, focused on the fuzzy c-mean technique (FCM). The results indicate that the FCM criterion is suitable for modeling complex processes such as the milling process. The fuzzy model obtained serves as foundation to develop complex supervisory systems.


2012 ◽  
Vol 565 ◽  
pp. 508-513 ◽  
Author(s):  
Jeong Hoon Ko ◽  
Kah Chuan Shaw ◽  
Sha Wei Tan ◽  
Rong Ming Lin

So far, the industrial application of ultrasonic vibration assistance has been successful in continuous machining process such as turning process where ultrasonic vibration velocity is much higher than cutting velocity. Recently, vibration assistance has been experimentally investigated to the intermittent milling process mainly for feed and cross- feed directions. This paper focuses on the effect of ultrasonic vibration assistance in spindle axial direction for improvement of machined surface. With the designed ultrasonic vibration assisted milling process with 39.7 kHz and a few micro-meter amplitudes, workpiece vibrates along spindle axial direction while different RPMs and feed rates are applied. The axial directional vibration assistance acts as additional cutting motion which further reduces the leftover surface error. Experimental results validate that surface roughness can be improved from 20 % to 65 % for the tested conditions. Apparently chatter marks of the milling process are reduced with the help of the axial ultrasonic vibration assistance.


Sign in / Sign up

Export Citation Format

Share Document