Fuzzy Modeling on the Basis of FCM Technique: A Case Study Aiming at Process Supervision

Author(s):  
Rodolfo E. Haber Guerra ◽  
Rodolfo Haber Haber ◽  
Angel Alique ◽  
Clodeinir R. Peres ◽  
Salvador Ros

Abstract The nonlinear behavior and complexity of machining processes have motivated researchers to use fuzzy model to effect process supervision. The main idea of this paper concerns the application of fuzzy logic and clustering techniques to develop a fuzzy model of the milling process aiming at the optimization of machine-tool performance and the overall machining process. A brief description of the algorithm employed is given, focused on the fuzzy c-mean technique (FCM). The results indicate that the FCM criterion is suitable for modeling complex processes such as the milling process. The fuzzy model obtained serves as foundation to develop complex supervisory systems.

2015 ◽  
Vol 809-810 ◽  
pp. 33-38 ◽  
Author(s):  
Ştefan Adrian Moldovan ◽  
Vasile Năsui

In this paper we present a technological problem encountered in the machining accuracy of the parts for aerospace made of aluminum alloy extruded profile with length up to 10 meters. Those parts have very tight tolerances and on milling process appear several factors that influence the repeatability of machining processes, the main one being the thermal expansion effect.


Author(s):  
Ahmet Dogrusadik

Thread milling is a new machining process as compared to thread tapping. As a thread making process in use for a long time, thread tapping did not have any alternative processes except the thread turning for limited cases until computer numerical control (CNC) technology had enabled the three axes synchronized motion. Therefore, investigations about the thread milling process are less as compared to other machining processes. In this work, the thread profile in the internal thread milling process was derived analytically. Experimental work was also performed to verify the performance of the analytical model. It was revealed that the thread profile produced by the cutting edge of the tool is not a straight line but a curve, and the average slope through the thread profile is less than the slope of the cutting edge of the tool. Besides, the effective thread profile enlarges along the vertical axis and constricts laterally as the ratio of thread mill diameter to thread diameter increases.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5326
Author(s):  
Andrés Sio-Sever ◽  
Erardo Leal-Muñoz ◽  
Juan Manuel Lopez-Navarro ◽  
Ricardo Alzugaray-Franz ◽  
Antonio Vizan-Idoipe ◽  
...  

This work presents a non-invasive and low-cost alternative to traditional methods for measuring the performance of machining processes directly on existing machine tools. A prototype measuring system has been developed based on non-contact microphones, a custom designed signal conditioning board and signal processing techniques that take advantage of the underlying physics of the machining process. Experiments have been conducted to estimate the depth of cut during end-milling process by means of the measurement of the acoustic emission energy generated during operation. Moreover, the predicted values have been compared with well established methods based on cutting forces measured by dynamometers.


Author(s):  
Saeid Amini ◽  
Mohammad Baraheni ◽  
Mohammad Khaki

Turn-milling process has been paid attention in order to be used in multi-task machining processes. Moreover, looking for new machining techniques aimed at reducing cutting force is of important. Reducing cutting force in machining processes has the benefits of extending tool life and improving surface quality. One of the new concepts for reducing the cutting force is applying ultrasonic vibration. In this paper, effects of ultrasonic vibration under different machining parameters in turn-milling process of Al-7075 alloy will be investigated. In this order, a special mechanism was designed to apply ultrasonic vibration during machining process. Ultrasonic vibration exertion on the tool reduced cutting force and surface roughness up to 75% and 35%, respectively. Also tool rotational speed increment induced cutting force and surface roughness increment. In addition, tool feed rate and workpiece rotational speed increment caused cutting force and surface roughness increment. Although, feed rate was more influential.


2019 ◽  
Vol 11 (2) ◽  
pp. 47-50
Author(s):  
Firdaus Firdaus ◽  
Rakiman Rakiman ◽  
Nota Effiandi ◽  
Yuli Yetri

Reverse Engineering (RE) is a process in manufacturing that aims to reproduce or recreate existing models, either components, sub-components, or products without using existing design documents or working drawings. Through this reverse engineering idea, the process of making the Pump Block component is started with making part and mold design, making sand casting, then finished with machining processes. The machining process that is carried out is the turning process, the milling process, and the drilling process which is assisted by using jigs and fixture to make it easier on finishing the Pump Block parts in the machining process. By using the processes, so it is produced the similar pump block that is resemble with desired original object.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3651-3660
Author(s):  
Jelena Baralic ◽  
Nedeljko Ducic ◽  
Andjelija Mitrovic ◽  
Pavel Kovac ◽  
Miroslav Lucic

Milling is one of the most important and most complex cutting machining processes. During the milling process, the cross-section of the chip is variable. Also, all milling operations are interrupted processes. The cutting edge of the mill tooth periodically enters and exits from the contact with the workpiece, which leads to periodic heating and cooling during the machining. This periodic change of temperature significantly affects the process of tool wear and therefore the quality of the machined surface. This paper aims at modeling and optimizing the parameters of the machining process to achieve the minimum temperature. In order to perform optimization, it was necessary to perform temperature measurements for the various parameters of the machining process. An infrared camera was used for the temperature measurement. Then, based on the measured values, the mathematical modeling of the temperature was performed depending on the cutting speed, the feed rate and the depth of cut. This model is then optimized using two different optimization techniques.


Author(s):  
Benjamin Glasse ◽  
Udo Fritsching

Metal working fluid (MWF) emulsions are utilized as coolants and lubricants in machining processes like turning or drilling. During their operation life time cycle, MWFs change their properties due to impacting stresses which may influence the machining and tool performance. A frequent refreshing or renewal of MWFs in machining process is thus necessary. This investigation discusses measurement techniques of MWF emulsions to be used for MWF quality assessment and process monitoring. By means of optical spectroscopic measurement techniques (turbidimetry and laser diffraction), the evaluation of the temporal change of the wavelength exponent and the MWF emulsion droplet size is related to the MWF stability. The in-process monitoring of the MWFs in machining during several weeks of operation is shown. Thus, it will be demonstrated that optical spectroscopic measurement techniques may be applied to determine stability change of the emulsion system.


2008 ◽  
Vol 43 ◽  
pp. 97-104 ◽  
Author(s):  
Klaus Weinert ◽  
Dirk Biermann ◽  
Michael Kersting ◽  
Sven Grünert

Different possible reasons for defects have to be considered in machining light-weight aluminum structures. In the machining process, the cutting power affecting the workpiece leads to a thermo-mechanical load that can cause undesirable workpiece deformations and thus shape deviations. Moreover, the microstructure and the machined surface can be influenced, which is detrimental to the later application of the structures. Previously conducted experimental and simulative investigations, estimated the circular milling process to be the most suitable machining operation that provides the best compromise between mechanical and thermal loads compared to drilling operations [1,2]. In this paper the results of machining end-cross-sections of an aluminum profile are presented. The machining was obtained by a milling process, which is demanding, because of the low profile stiffness. For this process it is important to know the effects of machining in view of the shape deviations. By means of a Finite-Element-Analysis the deformations of the profile web can be calculated as well as validated by experiments. Based on these results, the appropriate process parameter values for end machining can be defined.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2020 ◽  
Vol 87 (12) ◽  
pp. 757-767
Author(s):  
Robert Wegert ◽  
Vinzenz Guski ◽  
Hans-Christian Möhring ◽  
Siegfried Schmauder

AbstractThe surface quality and the subsurface properties such as hardness, residual stresses and grain size of a drill hole are dependent on the cutting parameters of the single lip deep hole drilling process and therefore on the thermomechanical as-is state in the cutting zone and in the contact zone between the guide pads and the drill hole surface. In this contribution, the main objectives are the in-process measurement of the thermal as-is state in the subsurface of a drilling hole by means of thermocouples as well as the feed force and drilling torque evaluation. FE simulation results to verify the investigations and to predict the thermomechanical conditions in the cutting zone are presented as well. The work is part of an interdisciplinary research project in the framework of the priority program “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).This contribution provides an overview of the effects of cutting parameters, cooling lubrication and including wear on the thermal conditions in the subsurface and mechanical loads during this machining process. At first, a test set up for the in-process temperature measurement will be presented with the execution as well as the analysis of the resulting temperature, feed force and drilling torque during drilling a 42CrMo4 steel. Furthermore, the results of process simulations and the validation of this applied FE approach with measured quantities are presented.


Sign in / Sign up

Export Citation Format

Share Document