scholarly journals The Effect of Hole Width on Full Height Rectangular Opening Castellated Steel Beam with Diagonal Stiffener Concerning Its Flexural Capacity

2019 ◽  
Vol 2 (2) ◽  
pp. 76
Author(s):  
Muhamad Rusli A. ◽  
Prabowo Setiyawan ◽  
Dessy Maimunah ◽  
Destia Wulandari

The use of a diagonal stiffener in a full height rectangular opening castellated steel beam can prevent the failure mechanism of vierendeel. This results in the flexural capacity of the castellated beam higher than the original IWF profile. The flexural capacity of a castellated steel beam can be optimized by designing the hole width on the web section. This research aims to find out the effect of several values of castellated steel beam hole width on the flexural capacity. In this research, there are 4 castellated steel beam models whose flexural capacity values are calculated using the truss analysis and pushover analysis methods. Based on the calculation results, it can be concluded that the smaller the value of the hole width, the greater the flexural capacity of the castellated steel beam will be. The largest increase in flexural capacity from the original IWF to the castellated beam is 140.93%.

2022 ◽  
Vol 955 (1) ◽  
pp. 012009
Author(s):  
M R Ahyar ◽  
P Setiyawan ◽  
C T Adinata ◽  
E Sukadana

Abstract Vierendeel is one of failure mechanisms in a castellated steel beam. Vierendeel mechanism is the main failure that occurs in a full high rectangular opening castellated beam. Vierendeel decrease castellated flexural capacity compare to the original wide flange section beam. One solution to prevent the vierendeel mechanism is by installing a diagonal stiffener in form of a steel bar on a castellated beam. The research’s purpose is finding the effect of different size of steel bar diameter on the flexural capacity. Four different sizes of steel bar diameter used in this research: 10 mm, 12mm, 16 mm, and 19 mm. Castellated beam flexural capacity is analysed with the method of truss analysis and pushover analysis. This study shows it can be infer that the bigger size of steel bar diameter does not always determine the higher flexural capacity of the castellated beam. Optimum value of the beam’s flexural capacity is affected by the strength of the flange section. The largest increment of flexural capacity between original wide flange compare to the castellated beam is 139.4% by using 16 mm diameter of the diagonal stiffener.


2021 ◽  
Vol 4 (1) ◽  
pp. 51
Author(s):  
Muhamad Rusli A. ◽  
Prabowo Setiawan

The axial capacity of a full height rectangular opening castellated steel beam with steel reinforcement stiffeners is proven to prevent Vierendeel failure mechanism. The effect is an increase in flexural capacity of the structure. Diameter of the steel reinforcement stiffeners is revealed to have an effect on its strength in resisting axial forces occur in the structure. However, size of the diameter is limited to the strength maximum value of the steel flange section in withstanding the moment force. Using optimal design of the castellated steel structure, this research aimed to find out the increase value of the axial capacity. There were two models of steel structures employed in the study, IWF 200x100x5.5x8 and castellated beam 362x100x5.5x8, both were loaded with axial directions. Analyses were conducted using truss and pushover methods. Results of the study showed an increase in both flexural (36.81%) and axial (60.78%) capacities. The increase in the value of structure capacity mainly influenced by the stiffeners shortened the effective length of the structure.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Ali Murtopo ◽  
Achmad Rafi'ud Darajat ◽  
Herlita Prawenti

<p class="abstract">Castellated steel beam is an engineered profile of steel beams to optimize its flexural strength. The consequence of this engineering is that the shear strength becomes weak because there are openings in the web. Researches to improve the shear strength of castellated beams has been carried out by modification these beams. Comparison is needed to determine the most optimal of castellated steel beam modification shear strength. The comparative method is carried out on existing research of modified castellated steel beams made from 150x75x7x5 IWF steel profiles, modifications in the form of openings engineering and the addition of stiffeners to openings and static testing. Types of beams that are compared includes original castellated beam, original castellated beam with lateral stiffeners, modified castellated beam with elbow steel stiffeners, modified castellated beam with reinforced steel diagonal stiffeners, and modified castellated beam with full rectangular openings and reinforced steel diagonal stiffeners. The comparison results show that modified castellated beam with full rectangular openings and reinforced steel diagonal stiffener have the most optimal shear strength with an increase of 146.54% compared to the original castellated beam.</p>


2021 ◽  
Author(s):  
Hayder Wafi Al-Thabhawee ◽  
Abbas Ali Al-Hassan

AbstractCastellated beams are made from a hot rolled steel I-section in a few steps. Firstly, the web of the parent I-section is cut in a particular zigzag pattern and the two halves are reconnected by welding to form a castellated beam with hexagonal openings. In other cases, a spacer plate is placed between the two halves to produce octagonal openings, which increase the section depth. Increasing the depth by adding spacer plates leads to web-post buckling. This study focuses on improving the castellated beam to obtain high strength with relatively low cost by placing a steel ring inside the octagonal openings to strengthen the weakest part, which is its web. The results show that the steel ring is effective in strengthening the web-post.


2021 ◽  
Vol 318 ◽  
pp. 03006
Author(s):  
Hayder A. Hashim ◽  
Alaa H. Al-Zuhairi

This research is carried out to study the effect of the external post-tensioning technique on the flexural capacity of simply supported composite castellated beam experimentally. In this research, seven composite castellated beams having the same dimensions and material properties were cast and tested up to failure by applied two concentrated loads at 700 mm from each end. Two external strands of 12.7 mm diameter were fixed at each side of the web of strengthening beams and located at depth 180 mm from top fiber of the section (dps) at each end of the beam. The strands have been tensioned by using a hydraulic jack with a constant stress of 100 MPa. This research aims to study the effect of the strengthening by different shapes of strand profiles of external post-tensioning techniques on the flexural capacity of the composite castellated beam. These beams were divided into three groups. Each group contained two composite castellated beams while 7th composite castellated beam kept without strengthening by external post-tensioning technique As control beam. The first group included two beams with straight strand profile of external Post-tensioning. The second group included two beams with a triangular strand profile of external post-tensioning. The third group included two beams with a trapezoidal strand profile of external post-tensioning. All composite castellated beams were simply supported, and all of them were fully shear connections between the concrete slab and steel girder. All beams included the 16 castellated openings and were stiffened by six stiffener plates welded on the web of castellated beams. Three stiffener plates are welded on each side of the web. Two of these stiffener plates welded at the middle of the beam, and four of them welded at locations under the loads. The experimental results of this research were increasing 5.43% in load capacity of an average of the straight profile of composite castellated beams, increasing 18.92% in load capacity of an average of triangular profile composite castellated beams, and increasing 20.71% in load capacity of the trapezoidal profile of composite castellated beams. All the above results were compared with control beams.


2018 ◽  
Vol 881 ◽  
pp. 150-157 ◽  
Author(s):  
Muhamad A. Rusli ◽  
Ali Murtopo ◽  
Iman Satyarno ◽  
M. Fauzie Siswanto

The full height rectangular opening castellated steel beam failed in Vierendeel mechanism. This makes the flexural capacity of castellated steel beam is lower than the original IWF section. This paper discusses analysis and test result of a full height rectangular opening castellated steel beam with diagonal stiffener. The diagonal stiffener used in this research has a purpose of preventing Vierendeel mechanism. This research used two specimens, a short span specimen to study shear behavior, and a long span specimen to study flexural behavior. Test results show that the long span specimen can avoid Vierendeel mechanism and increase the yield moment capacity by 1.6 times of the original IWF section. The failure of the short span specimen is a combination of shear failure and Vierendeel mechanism as in elastic condition, the diagonal stiffener, flange, and web post were worked and failed together. Based on the test result, truss analysis method can be used to calculate the flexural capacity of full height rectangular opening castellated steel beam with diagonal stiffener. Theoretical calculation of yield moment capacity of the long span specimen has 8.25% difference from the real yield moment capacity.


2013 ◽  
Vol 351-352 ◽  
pp. 174-178
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

With the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: when reached the ultimate strength, the strength degradation and stiffness degradation of joints are slowly and the ductility is also good, the energy dissipation capacity of joints is much better.


2021 ◽  
Author(s):  
Hu Daohang ◽  
Zhao Xin

<p>This paper introduces a new idea in the reconstruction and continuation projects. By arranging damping devices, the additional damping of the structure is increased, thereby reducing the dynamic response of the structure under the new seismic precautionary criterion. This paper focuses on the study of viscous dampers which one of the damping device, introduces the energy dissipation principle of viscous dampers, and combines a two-story plane frame case to analyze and compare the dynamic response between non-damping structure and damping structure. The location and quantity of the arrangement were compared with multiple models. Through analysis, it can be seen that by equipping with viscous dampers, seismic energy can be effectively dissipated, thereby reducing the workload of structural reinforcement and having less impact on the original structure. Finally, two commonly analysis methods in damping structures are studied, direct integration method and fast nonlinear analysis (FNA), the main differences between the two analysis methods are introduced, and the calculation results of the two methods are compared and analyzed.</p>


2021 ◽  
pp. 55-100
Author(s):  
Farzad Hejazi ◽  
Hojjat Mohammadi Esfahani
Keyword(s):  

2010 ◽  
Vol 163-167 ◽  
pp. 862-865
Author(s):  
Yan Min Jia ◽  
Dong Wei Liang

The prestressed steel beam is regarded as a composite system of beam and cables, and the interaction of the two parts is fully considered. The variational method is used to derive the equations for calculating the tension increment of external cables and deflection of steel beam under applied loadings. A model test of prestressed steel beam is used to verify the calculation results.


Sign in / Sign up

Export Citation Format

Share Document