scholarly journals HARDWARE AND SOFTWARE ENGINE EMULATION IN THE AUTOPILOT SYSTEMS

Author(s):  
M. F. Sadykov ◽  
A. V. Golenishchev-Kutuzov ◽  
N. K. Andreev

Now a number of the leading firms work on creation of an automobile autopilot. The authors of the presented article offer to complement the system of an autopilot with the control system of the car technical condition. The developed hardware and software complex allows working with virtual mathematical model of the gas engine of the KamAZ truck and can be recustoized under different modifications of gas and diesel engines. At the same time by means of this complex there is an opportunity to reveal the latent defects of a control system and to reduce labor input of calibration procedures. The hardware and software allows testing electronic control units in standard and emergency operation modes of sensors and actuators, thereby providing compliance to the modern Russian and international requirements to control systems of cars.

2019 ◽  
pp. 64-72
Author(s):  
G.G. Arunyants

The results of analysis of problems of regulation of gas supply complex of Kaliningrad region and main ways to increase its efficiency, as well as basic solutions for creation of a software complex Т-GAZ-2 automated calculation of natural gas tariffs for ACS of gas supply system subjects, geographically distributed and information connected to the regional automated information and control system (RAIS).


Author(s):  
S. V. Grigorieva ◽  
A. V. Olshansky

The article is devoted to the problems of maintenance of overhead power lines in the Far North of Western Siberia. For improvement of quality and reliability of power supply of consumers in the conditions of the Far North of Western Siberia, decrease in operational costs and volumes of the carried-out emergency works the hardware-software complex for expeditious inspection, assessment and forecasting of change of technical condition of constructive part of air lines (VL) of 35-220 kV is developed, the structure of the hardware-software complex of registration of the condition of constructive part of VL of 35-220 kV and structure of the hardware-software complex of storage., processing and analysis of the obtained data on the States of the constructive part of the VL 35-220 kV. 


2018 ◽  
Vol 239 ◽  
pp. 06002
Author(s):  
P.V. Chepur ◽  
A.A. Tarasenko ◽  
A.A. Gruchenkova

The problem of the limiting states occurrence in the structures of a vertical steel tank is investigated in this work. To study the SSS of the metal structures of the object, the authors created a numerical model of the RVS-20000 tank in the ANSYS software complex. The model considers the maximum number of elements with their geometry and connections affecting the tank SSS under non-axisymmetric loading, including beyond the elasticity of steel. Dependences between the parameters of intrinsic stiffness of the VST are obtained. The results of the finite element analysis made it possible to develop a technique for assessing the technical condition of the structure with the development of irregular subsidence of the external bottom contour. The proposed technique can be used by both operating and design organizations in making managerial decisions regarding the repair of RVS-20000 subjected to the base subsidence.


Author(s):  
Andrew Peekema ◽  
Daniel Renjewski ◽  
Jonathan Hurst

The control system of a highly dynamic robot requires the ability to respond quickly to changes in the robot’s state. This type of system is needed in varying fields such as dynamic locomotion, multicopter control, and human-robot interaction. Robots in these fields require software and hardware capable of hard real-time, high frequency control. In addition, the application outlined in this paper requires modular components, remote guidance, and mobile control. The described system integrates a computer on the robot for running a control algorithm, a bus for communicating with microcontrollers connected to sensors and actuators, and a remote user interface for interacting with the robot. Current commercial solutions can be expensive, and open source solutions are often time consuming. The key innovation described in this paper is the building of a control system from existing — mostly open source — components that can provide realtime, high frequency control of the robot. This paper covers the development of such a control system based on ROS, OROCOS, and EtherCAT, its implementation on a dynamic bipedal robot, and system performance test results.


Author(s):  
A.V. SYTIN ◽  
N.V. TOKMAKOV ◽  
A.V. GORIN ◽  
М.А. TOKMAKOVA

The article considered the assessment of the technical condition of a petal bearing with adjustable stiffness. A schematic diagram of bearing stiffness control is presented. Revealed a constructive solution providing rigidity adjustment. For a qualitative assessment of the technical condition, a petal bearing was modeled in the VATCAD environment. The schematic diagram and block diagram of the control system of the experimental stand for assessing the technical condition of the petal bearing are described. Recommendations are given for the further application of the concept of assessing the technical condition of petal bearings.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1693
Author(s):  
Chanchan Du ◽  
Lixin Zhang ◽  
Xiao Ma ◽  
Xiaokang Lou ◽  
Yongchao Shan ◽  
...  

Scientific researchers have applied newly developed technologies, such as sensors and actuators, to different fields, including environmental monitoring, traffic management, and precision agriculture. Using agricultural technology to assist crop fertilization is an important research innovation that can not only reduce the workload of farmers, but also reduce resource waste and soil pollution. This paper describes the design and development of a water-fertilizer control system based on the soil conductivity threshold. The system uses a low-cost wireless sensor network as a data collection and transmission tool and transmits the data to the decision support system. The decision support system considers the change in soil electrical conductivity (EC) and moisture content to guide the application of water-fertilizer, and then improves the fertilization accuracy of the water-fertilizer control system. In the experiment, the proposed water-fertilizer control system was tested, and it was concluded that, compared with the existing traditional water-fertilizer integration control system, the amount of fertilizer used by the system was reduced by 10.89% on average, and it could save 0.76–0.87 tons of fertilizer throughout the whole growth period of cotton.


2022 ◽  
Vol 21 (4) ◽  
pp. 328-336
Author(s):  
A. V. Popov ◽  
A. O. Samuylov ◽  
I. S. Cherepanov

Introduction. The paper analyzes the application of composite materials as the main determining method of reducing the mass of the airframe and an unmanned aerial vehicle. Advanced nondestructive testing methods provide assessing the technical condition of these materials, as well as determining stress concentrators on the airframe and an unmanned aerial vehicle with high accuracy in order to make a decision on the further operation of this object under control. The objective of the work was to increase the accuracy and efficiency of the assessment of crack resistance of composite materials through the acoustic emission control.Materials and Methods. This paper presents the nomenclature of composite materials used in the construction of various aircraft, including unmanned aerial vehicles. The most possible probable defects of these materials due to the influence of operational factors are presented. The applied methods of nondestructive testing of composite material and selection of the most suitable one according to specific advantages were compared. An experiment was carried out to determine the strength limits of carbon fiber using a hardware and software complex by acoustic emission method. The research results are presented in the form of drawings projected by the hardware and software complex.Results. The application of the acoustic-emission method of composite material control is described.Discussion and Conclusions. The results obtained experimentally can be used in the process of determining the strength limits of various composite materials by the acoustic emission method of nondestructive testing to assess the technical condition in mechanical engineering, shipbuilding, and aircraft construction. The paper is recommended to researchers involved in the design of aircraft and unmanned aerial vehicles.


Sign in / Sign up

Export Citation Format

Share Document