scholarly journals PENGARUH PENAMBAHAN SERAT ECENG GONDOK PADA KUAT TEKAN PAVING BLOCK K-200

UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Muttaqin Fauzin Istighfarin ◽  
Rasio Hepiyanto

Abstract Paving block is one of the products of building materials used as the top layer of the street structure, compared to other pavements like cast concrete and asphalt, paving block has been widely chosen especially to the streets used to traversed by low-speeed vehicles. This study aims to know and analyze how strong the influence of additional water hyacinth fiber to the compressive strength of K-200 paving block. Method used in this study is experimental method, with the comparison of mix design reffering to the comparison of concrete quality mixture K-200 (SNI 7394-2008). The result is K-200 paving block decreases its compressive strength after given the mixture of water hyacinth fiber. The precentage of the lowest decrease is in the 0,2 mixture of 55,69% and the highest decrease is in the mixture of 0,8 with the decline presentage of of 82,39%. The score of compressive strength for each test object is: Normal of 209,53 kg/cm², 2% of 92,86 kg/cm², 4% of 84,53 kg/cm², 6% of 58,33 kg/cm², and 8% of 36,90 kg/cm². The relationship of non-linear regression can be seen in R² = 1 on  polinomial orde 4. Paving block with with code objects test “Normal” classified as in the quality of paving block B with compressive strength of 209,53 kg/cm² (17,03 Mpa), while for paving block with extra water hyacinth fiber, it is below the compressive strength standard according to SNI 03-0691-1996. Keywords: Rigid Pavement, Paving Block, Water Hyacinth, Compressive Strength.

UKaRsT ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Dwi Kartikasari ◽  
Samsul Arif

However, flexible pavement has many disadvantages, such as early damage to the road surface after some time has passed by traffic so the road cannot reach the planned age. For this reason, a research was carried out to add hot asphalt mixture which aims to improve the quality of the mixture, the selected material is natural water hyacinth. The method used is trial and error with reference SNI 031737-1989. Variations used were 3%, 5%, and 7% of asphalt weight, the level of asphalt used was 4.48%. Of the 3 variations of the mixture used in Type I Asphalt Concrete Layer, the results obtained that the water hyacinth fiber content that has the best score and meet the specifications of SNI 03-1737- 1989 is the percentage of 7% obtained. from the calculation data using graphs and regression models where Marshall Stability is 889.73 Kg, VFWA (voids filled with asphalt) are equal to 65.97%, VIM (voids in mixtures) are equal to 1.757%, VMA (voids in mineral aggregates ) is equal to 20.30%, density 2.420 gr / cc, Flow 3.37 mm, and Marshall Quotient of 265.80 Kg / mm.Keywords : flexible pavement, water hyacinth fiber, Marshall test.


2014 ◽  
Vol 955-959 ◽  
pp. 3522-3528
Author(s):  
Jian Feng Zhang ◽  
Ya Xiong Deng ◽  
Zhan Qin Lei ◽  
Wei Xie

In the past two decade, the Chinese government has paid a huge effort to solve the problem of drinking water in remote rural. As an alterative success case, rainwater harvesting and utility has been the most efficient way to supplying fresh water in rural areas of the Loess Plateau, a typical water resources serious shortage area in China. Focused on improving the quality of the rural village cistern water, study about the characteristics of ion release from building materials during runoff process with five representative materials used for rainwater collection: concrete, red brick, grey tile, red tile and soil was conducted. The ion releasing process and following effect on cistern water quality index, such as hardness, pH, conductivity, has been analyzed. Results revealed that the most release strength of different materials was arriving at 30s following startup. Furthermore, the test of effects of rain acidity on ion release procession showed that the total ion release increased with storm water pH declining, however, the release strength was irrelevance with runoff’s pH. Based on research results, a detailed suggestion was provided to renovate intake construction of cistern for improving the drinking water quality in remote rural areas of Weibei Semi-arid District.


Author(s):  
Leopold Mbereyaho ◽  
Jean de Dieu Mutabaruka ◽  
Abaho G. Gershome ◽  
Armel Ineza ◽  
Ezra Ngirabatware

The construction industry is one of the rapidly growing and the cost analysis suggests that the materials cost is constantly increasing. The continuous extraction of aggregates intensively used in the field is negatively acting to the environment. Therefore research in construction materials should focus not only on discovering new alternative materials but also in appreciating the quality of those locally available for their better application. This research aimed at evaluating the performance of bamboo and mud bricks as two available local building materials, especially with regards not only to their strength but also to new performance concepts which are affordability, energy efficiency and environment friendly aspects. The study comprised mainly of laboratory tests of used materials and cost estimation analysis. Study results established that the considered bamboo and mud bricks, made in ordinary soils and reinforced by sisal fibers were reusable, environment friendly materials and energy efficient, with the bamboo showing the thermal conductivity equal to 0.1496 W/mK. Regarding the compressive strength, reinforced mud bricks with sisal fibers showed an increased value from 1.75 MPA to 4.29MPA, what was in line with related previous studies. The average compressive strength of the studied Arundinaria Alpine bamboo was established at 133,7MPA, while its tensile strength was 88.16MPA and these values were reasonable with comparison to other conventional materials. It is recommended that further research in checking the performance of other types of bamboo as well as about new construction technologies be undertaken in order to enhance the service life of both bamboo and mud bricks.Keywords: Affordability, Bamboo, Conventional concrete, Materials strength, Mud reinforced bricks, Sustainability


2018 ◽  
Vol 15 (1) ◽  
pp. 11-16
Author(s):  
Fauna Adibroto ◽  
Etri Suhelmidawati ◽  
Azri Azhar Musaddiq Zade

Various research in concrete sector has been done as an effort to increase quality of concrete, materials and method, materials technology and implementation techniques obtained from the results of the experiments and experiments are intended to answer the increasing demands on the use of concrete and overcome the constraints that often occur in the implementation of work in the field. One way to increase the strength of concrete is to use a cement replacement that is fly ash.The purpose of this research is to know the influence of partial cement replacement effect with fly ash to the concrete compressive strength, in order to be applicated for rigid pavement in road design. The variations of composition in the addition of fly ash is 0%, 10%, 12.5%, 15%, 20% and 25% of the weight of cement. Concrete compressive strength is 40 MPa and tested at 7 days and 28 days. This research tested concrete with cylinder test object (diameter 150 mm and height 300 mm) with 30 sample and consist of 6 variation. From this research, optimum compressive strength at 10% variation is 30,770 MPa. The lowest compressive strength is in the 25% variation with 20,046 MPa.The highest compressive strength obtained from the research is 30.770 Mpa.


Author(s):  
S. Khanin ◽  
N. Kikin ◽  
O. Mordovskaya

Paddle mixers with horizontal shafts are common at building materials enterprises for the preparation of concretes, mortars, dry mortars. A new design of a horizontal paddle mixer with rod elements located in front of the working surfaces of the blades, changing the trajectories of material particles, increasing their mobility, which leads to an increase in the degree of homogeneity of the mixed material, is considered. The aim of the study was to assess the influence of rod elements on the quality of preparation of a cement-sand mixture, to establish patterns of influence on it by the design and technological parameters of a two-shaft paddle mixer and to determine the areas of their rational values. The following tasks have been solved. A bench installation of a two-shaft horizontal paddle mixer with rod elements has been developed, on which experimental studies have been carried out on the preparation of dry cement-sand mixtures. For the criterion characterizing the quality of the mixture, the ultimate compressive strength of the prism specimens made from it is adopted. Regression equations are obtained that adequately describe the compressive strength of prism samples from the design and technological parameters of the mixer: the angle of the blades, the distance from the working surfaces of the blades to the rod elements, the rotational speed of the blade shafts, and their analysis is performed. The analysis of the change in the ultimate compressive strength of the prism specimens from the parameters under study is carried out, the rational ranges of their values are determined. It was found that a mixer with rod elements allows to obtain a dry cement-sand mixture, products from which have a higher compressive strength. During the work, the method of mathematical planning of experiments was used. As a result of the study, an assessment of the influence of rod elements on the quality of preparation of a cement-sand mixture was carried out, the regularities of the influence on it of the design and technological parameters of a two-shaft paddle mixer and the area of their rational values were established.


Author(s):  
E. N. Desyatko ◽  
◽  
V. D. Staroverov ◽  
A. A. Gerasimenko ◽  
K. Y. Mazneva ◽  
...  

The article considers the possibility of applying the prioritization method to facilitate the choice between materials with equivalent or similar characteristics when carrying out major repairs in apartment buildings. The currently existing problems of the major repairs of MKD in St. Petersburg are analyzed. A scale of criteria for the selection of materials is given and a methodology for the selection of building materials for the overhaul of apartment buildings is proposed.


2019 ◽  
Vol 1 (1) ◽  
pp. 36-45
Author(s):  
Pratikto Pratikto ◽  
Ginanjar A

Paving block merupakan bahan bangunan yang digunakan sebagai pekerasan permukaan jalan, baik jalan untuk keperluan parkir kendaraan ataupun jalan raya, ataupun untuk keperluan dekoratif pada pembuatan taman. Bahan penyusun paving block adalah semen, pasir dan air dengan atau tanpa bahan tambah lainnya. Bahan tambah yang digunakan dapat berupa limbah atau sisa bahan bangunan yang tidak terpakai. Penggunaan limbah bertujuan untuk mendapatkan mutu paving block sesuai standard dan memanfaatkan limbah secara optimal. Limbah genteng beton banyak ditemukan di sekitar bangunan bertingkat yang sudah lama dan khususnya kampus Politeknik Negeri Jakarta.Limbah ini dapat digunakan sebagai bahan pembentuk paving block sebagai substitusi agregat kasar. Dalam penelitian ini digunakan perbandingan semen dan pasir adalah 1 : 3 dengan presentase limbah genteng beton sebesar 0%, 10%, 20%, 30%, dan 40%. Nilai fas yang digunakan adalah 0,35. Hasil pengujian nilai kuat tekan yang ditinjau pada hari ke 7 pada presentase 0% sebesar 52,59 Mpa, presentase 10% sebesar 44,949 Mpa, presentase 20% sebesar 40,942 Mpa, presentase 30% sebesar 40,685 Mpa dikategorikan mutu A, sedangkan presentase 40% sebesar 26 MPa dikategorikan mutu B.Kata kunci: paving block, Limbah genteng beton, agregat kasar Paving block is a material that is used as a road surface hardening, either for vehicle parking , highways, or for decorative purposes in gardening. The constituent material of paving blocks are cement, sand and water with or without other added material. The added material used can be in the form of waste or residual unused building materials. The use of waste building material of concrete tile aims to get the quality of paving blocks according to standards and utilize waste optimally. Waste concrete roof tiles can be found around many high-rise building constructions and especially Jakarta State Polytechnic campus.This waste can be used as a paving block as a rough aggregate substitute. In this study the ratio of cement and sand was 1: 3 with a percentage of concrete tile waste of 0%, 10%, 20%, 30%, and 40%. The fas value used is 0.35. The testing results of compressive strength which is reviewed on day 7 at a percentage of 0% of 52.59 MPa, 10% of 44.949 MPa, 20% of 40.942 MPa, 30% of 40.658 MPa are categorized as grade A, while at a percentage of 40% the compressive strength is 26 MPa which is categorized as grade B.Keywords: paving block , waste concrete tile, coarse aggregate


2019 ◽  
Vol 64 ◽  
pp. 02008
Author(s):  
Céline Drozd ◽  
Virginie Meunier ◽  
Antoine Mabire

This article relies on a workshop called “materials of ambiances” that is taking place at the Graduate School of Architecture of Nantes. It aims for the students to question the qualities of ambiances within spaces with an approach through the concept of material, making them aware of invisible materials (ambiances) from the manipulation of visible materials (building materials). The experimentation with materials holds a significant place: the students are asked to build an ambiance device to create a sensory experience in order to highlight every sensory quality of a material capable of producing an ambiance. The materials used for this experiment are mostly from fields beyond architecture as to think of potential misappropriations. It is about making sure that the student tests by himself the materials and recreates the connection between data from the experiment, and the physical characteristics given by the manufacturers and industrialists. The pedagogical experience that we present aims at creating within students an interest for the built material, to develop ambiance intentions to qualify projected spaces, which are not always measurable but always noticeable. This article proposes to turn back to the way the qualities of ambiances are felt, the misappropriations of materials are perceived, as well as the perspectives on the evolution of the architectural design process. This contribution is illustrated by an ambiance device whose the name is “Cosmic dream” built in 2018/2019 by Marilou Bach, Hugo Falaise, Carole Lyssandre and Charlotte Say.


Author(s):  
Masri A Rivai ◽  
Zainul Bahri ◽  
Aziiz Yudhatama

The use of additional materials as a mixture in the manufacture of concrete is progressive. The materials used are also increasingly varied, depending on the expected results, the added material that will hopefully achieve the expected quality of the concrete is f'c 24.9 MPa This research aims to increase the percentage of concrete increase in the percentage of addition of sugar cane dust and palm shell ash.This research uses cylindrical specimens with a total of 42 specimens consisting of 2.5% and 5% bagasse ash and 0, 2.5%, 5%, 7.5%, and 10% palm shell ash as materials. alternative to the strength of the compressive strength test concrete for 28 days.Based on the results of testing the compressive strength of cylindrical concrete, it is concluded that the increase in compressive strength is the largest. can be obtained 5% bagasse ash and 5% palm shell ash with a characteristic value of f'C 26.31 Mpa for 28 daysKeywords: Concrete, bagasse ash, palm shell ash, compressive strength


There are numerous factors that affect the performance of concrete in terms of strength and durability aspects. Amongst, the pores in the concrete are the one which is playing a foremost role in deciding strength and durability characteristics. The presences of pores in the concrete are due to inferior quality of concrete ingredients, lack of w/c ratio, improper compaction, poor workmanship etc. Many past studies reveal that the presence of fillers materials may reduce the pores on the concrete. But at the same time, the strength and durability should improve a lot. Under these circumstances, the presence of steel fibres in the concrete will give a better solution to arrest the pores and furnish desired results in all aspects. This study is made an attempt to establish the relationship between porosity and compressive strength on the various proportions of steel fibres of M20 and M40 grade concrete


Sign in / Sign up

Export Citation Format

Share Document