scholarly journals KAJIAN EKSPERIMENTAL TENSILE PROPERTIES KOMPOSIT POLIESTER BERPENGUAT SERAT KARBON SEARAH HASIL MANUFAKTUR VACUUM INFUSION SEBAGAI MATERIAL STRUKTUR LSU

2018 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Kosim Abdurohman ◽  
Aryandi Marta

Vacuum infusion is a manufacturing method to improve mechanical properties of composite. Before apply this in LSU structure, it should be experimented using tensile test to know mechanical properties of the composite. Tensile test is an experimental to know tensile strength, modulus of elasticity, and failure modes of composite. Experimental process of CFRP composite using unidirectional carbon fiber and polyester matrix was done using vacuum infusion technology, strart from specimens preparation until testing steps. Manufacturing results gave the values of composite density and thickness; mass and volume fraction of fiber and matrix materials. Specimens and testing process are refer to ASTM D3039 tensile test standard for composite matrix polymers. The testing results showed 1011.67 MPa ultimate tensile strength, 59074.96 MPa modulus of elasticity, and SGV (long spliting, gage, various) failure mode . ABSTRAKVacuum infusion merupakan salah satu metode manufaktur yang digunakan untuk meningkatkan sifat mekanik komposit. Untuk mengaplikasikan metode ini dalam pembuatan struktur LAPAN Surveillance UAV (LSU), perlu diketahui terlebih dahulu sifat mekanik dari komposit hasil metode ini secara eksperimen. Salah satu eksperimen yang dilakukan yaitu pengujian tarik untuk mendapatkan tensile strength, modulus elastisitas, dan failure mode yang terjadi pada komposit. Eksperimen dilakukan terhadap komposit CFRP menggunakan material serat karbon searah (UD) 0⁰ dan matriks poliester dibuat dengan metode vacuum infusion mulai dari tahap preparasi sampai tahap pengujian. Dari hasil manufaktur didapat nilai densitas dan ketebalan komposit serta fraksi massa dan fraksi volume material penyusun komposit. Spesimen dan proses pengujian mengikuti standar ASTM D3039 yang merupakan standar pengujian tarik untuk komposit dengan matriks polimer. Hasil pengujian menunjukkan nilai ultimate tensile strength 1011,67 MPa, modulus elastisitas 59074,96 MPa, dan failure mode SGV (Long Spliting, Gage, Various).

2016 ◽  
Vol 14 (1) ◽  
pp. 61 ◽  
Author(s):  
Kosim Abdurohman ◽  
Aryandi Marta

Vacuum infusion is a manufacturing method to improve mechanical properties of composite. Before apply this in LSU structure, it should be experimented using tensile test to know mechanical properties of the composite. Tensile test is an experimental to know tensile strength, modulus of elasticity, and failure modes of composite. Experimental process of CFRP composite using unidirectional carbon fiber and polyester matrix was done using vacuum infusion technology, strart from specimens preparation until testing steps. Manufacturing results gave the values of composite density and thickness; mass and volume fraction of fiber and matrix materials. Specimens and testing process are refer to ASTM D3039 tensile test standard for composite matrix polymers. The testing results showed 1011.67 MPa ultimate tensile strength, 59074.96 MPa modulus of elasticity, and SGV (long spliting, gage, various) failure mode . Abstrak Vacuum infusion merupakan salah satu metode manufaktur yang digunakan untuk meningkatkan sifat mekanik komposit. Untuk mengaplikasikan metode ini dalam pembuatan struktur LAPAN Surveillance UAV (LSU), perlu diketahui terlebih dahulu sifat mekanik dari komposit hasil metode ini secara eksperimen. Salah satu eksperimen yang dilakukan yaitu pengujian tarik untuk mendapatkan tensile strength, modulus elastisitas, dan failure mode yang terjadi pada komposit.Eksperimen dilakukan terhadap komposit CFRP menggunakan material serat karbon searah (UD) 0⁰ dan matriks poliester dibuat dengan metode vacuum infusion mulai dari tahap preparasi sampai tahap pengujian. Dari hasil manufaktur didapat nilai densitas dan ketebalan komposit serta fraksi massa dan fraksi volume material penyusun komposit. Spesimen dan proses pengujian mengikuti standar ASTM D3039 yang merupakan standar pengujian tarik untuk komposit dengan matriks polimer. Hasil pengujian menunjukkan nilai ultimate tensile strength 1011,67 MPa, modulus elastisitas 59074,96 MPa, dan failure mode SGV (Long Spliting, Gage, Various).


2018 ◽  
Vol 21 (1) ◽  
pp. 147 ◽  
Author(s):  
Sihama I. Salih ◽  
Qahtan A. Hamad ◽  
Safaa N. Abdul Jabbar ◽  
Najat H. Sabit

This work covers mixing of unsaturated polyester (un- polyester) with starch powders as polymer blends and study the effects of irradiation by UV-acceleration on mechanical properties of its. The unsaturated polyester was mixing by starch powders at particle size less than (45 µm) at selected weight fraction of (0, 0.5, 1, 1.5, 2, 2.5 and 3%). These properties involve ultimate tensile strength, modulus of elasticity, elongation percentage, flexural modulus, flexural strength, fracture toughness, impact strength and hardness. The results illustrate decrease in the ultimate tensile strength at and elongation percentage, while increasing modulus of elasticity, with increasing the weight ratio of starch powder to 3 % weight fraction, whereas the maximum value of hardness and flexural, impact properties happened at 1 % weight fraction for types of polymer blends.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 573
Author(s):  
Jing Zhao ◽  
Dezheng Liu ◽  
Yan Li ◽  
Yongsheng Yang ◽  
Tiansheng Wang ◽  
...  

The microstructures and mechanical properties of ausrolled nanobainite steel, after being tempered at temperatures in the range of 200−400 °C, were investigated in this study. After being tempered, bainitic ferrite is coarsened and the volume fraction of retained austenite is reduced. The hardness and ultimate tensile strength decrease sharply. The impact energy, yield strength, and elongation increase with elevated tempered temperature at 200–300 °C but decrease with elevated tempered temperature when the samples are tempered at 350 °C and 400 °C. The fracture appearance of all the samples after impact tests is a brittle fracture. The variation of the mechanical properties may be due to partial recovery and recrystallization.


2011 ◽  
Vol 682 ◽  
pp. 49-54
Author(s):  
Bin Chen ◽  
Chen Lu ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng

The Mg96Y3Zn1 alloy processed by equal channel angular pressing has been investigated. It was found that the Mg96Y3Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy refined to about 400 nm. The highest strengths with yield strength of 381.45MPa and ultimate tensile strength of 438.33MPa were obtained after 2 passes at 623K. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test. As a result, the elongation of alloy is decreased with pass number increasing.


2019 ◽  
Vol 805 ◽  
pp. 59-64
Author(s):  
Achmad Chafidz ◽  
Cholila Tamzysi ◽  
Lilis Kistriyani ◽  
Ratna Dewi Kusumaningtyas ◽  
Dhoni Hartanto

PP/clay nanocomposites samples of 1st and 2nd cycles (recycle) and different nanoclay loadings (i.e. 0, 5, 10, 15 wt%) samples were made by utilizing twin-screw extruder and injection molding machine. The samples were then characterized using a tensile test machine. The tensile tests results showed that modulus of elasticity and tensile strength of the nanocomposites samples for both 1st and 2nd cycles were all higher than the neat PP, and increased with increasing nanoclay loadings. The enhancements of modulus of elasticity (as compared to the neat PP) for 1st cycle of the nanocomposites were about 38.08%, 49.33%, and 78.65% for NC-5-I, NC-10-I, and NC-15-I, respectively. Whereas, for the 2nd cycle of the nanocomposites were about 44.33%, 59.59%, and 84.69% for NC-5-II, NC-10-II, and NC-15-I, respectively. This indicated that the incorporation of nanoclay in the PP matrix significantly increased mechanical properties, especially modulus of elasticity and tensile strength of the nanocomposites. Additionally, values of modulus of elasticity and tensile strength of 1st cycle and 2nd cycle of PP/clay nanocomposites were compared by plotting them in two graphs. The plots revealed that reprocessing of the nanocomposites did not significantly influence the mechanical properties of the nancomposites.


2013 ◽  
Vol 747-748 ◽  
pp. 245-250 ◽  
Author(s):  
Jun Luo ◽  
Rong Shi Chen ◽  
En Hou Han

The microstructure and mechanical properties of as-cast Mg-3Sn-xGd (x=0, 0.2, 1 wt.%) alloys were studied by using OM, SEM, EDX, XRD etc. With the increase of Gd, the formation of Mg2Sn phase was impeded and the MgSnGd phase formed and the volume fraction of this new phase obviously increased. The ultimate tensile strength and elongation to failure increased with dilute Gd addition but sharply decreased when the Gd addition comes to 1.34 wt.%. The possible reasons for the variation in microstructure and mechanical properties were discussed.


Author(s):  
Karun Kalia ◽  
Amir Ameli

Fused deposition modeling (FDM) is highly commercialized Rapid Prototyping (RP) technology for its ability to build complex parts with low cost in a short period of time. The process parameters in the FDM play a vital role in the mechanical properties of the polymeric parts. Most of the research studies show that the variable parameters such as orientation, layer thickness, raster angle, raster width, and air gap are some of the key parameters that affect the mechanical properties of FDM-processed polymeric parts. However, no reports have been made regarding the influence of nozzle diameter with raster width on the tensile properties of FDM fabricated polymeric parts. This work was devoted to achieving improved and isotropic mechanical properties in polycarbonate (PC) and PC/carbon nanotube (PC/CNT) nanocomposites by investigating the effect of printing parameters in FDM process. The nozzle diameter to raster width ratio, α was found to significantly affect the mechanical properties. The printing direction dependency in tensile properties were studied with the ratio α < 1 and α≥ 1 at three different raster angles of 0°, 45°/−45° and 90°. For α < 1, Ultimate tensile strength and modulus of elasticity were higher for 0°, compared to 45°/−45° and 90° raster angles. However, for α ≥ 1, the ultimate tensile strength and the modulus of elasticity showed little dependency to print direction. This certainly determines the decrease in anisotropy at higher values of α. Mesostructure characterization with microscopy and image analysis were used to further explain the printing behavior and the resultant properties of the printed samples.


2015 ◽  
Vol 817 ◽  
pp. 439-443 ◽  
Author(s):  
Rui Dong ◽  
Ai Min Zhao ◽  
Ran Ding ◽  
Jian Guo He ◽  
Han Jiang Hu

The microstructures, mechanical properties and retained austenite characteristics of TRIP-aided steels with three different heat treatments were studied in this paper. The results indicated that the designed annealing treatments resulted in completely different matrices and the morphologies of second phase, and a significant difference in mechanical properties. The TAM steel was found to have fine annealed martensite lath matrix and inter lath acicular retained austenite, and possessed an excellent combination of strength and elongation which attributed to the highest retained austenite volume fraction and carbon concentration. For TPF steel, the higher instability and lower carbon content of retained austenite and the soft matrix resulted in the lowest ultimate tensile strength and total elongation. While in TBF steel, the stability of retained austenite was lower than that in TAM steel but higher than that in TPF steel. The ultimate tensile strength of TBF was significantly higher than the TAM and TPF steels, but the ductility of TBF steel was lower than TAM steel.


2015 ◽  
Vol 766-767 ◽  
pp. 606-611 ◽  
Author(s):  
T. Arunkumar ◽  
S. Ramachandran

Polyurea coatings are very reactive and fast curing even at very low temperatures with exceptional mechanical properties, chemical resistance and durability. Polyurea spray coating technology is used to overcome the initial problems in surface coating such as substrate wetting,mixing and surface finish. The study deals with the analysis of morphology and tensile properties of polyurea coating. The polyurea sample is characterized by using SEM, FTIR and XRD in addition to EDAX to determine the microstructure and chemical composition. Finally Tensile Test was carried out to examine the ultimate tensile strength and young’s modulus of Polyurea using UTM.


2015 ◽  
Vol 827 ◽  
pp. 294-299 ◽  
Author(s):  
Anne Zulfia ◽  
J. Salahuddin ◽  
Hafeizh E. Ahmad

Al-Si-Mg reinforced with Al2O3 nano particles have been made by stir casting method. The vortex produced by stirrer is to distribute the Al2O3 nano particles in the molten aluminium. The volume fraction of Al2O3 nano particles was varied from 0.5, 1, 2, 3, to 5 Vf%, while the addition of magnesium was 3 Vf% as wetting agent to improve the wettability between Al2O3 nano particle and Al-Si-Mg matrix. The effect of Al2O3 on characteristic of Al-Si-Mg composites was studied. It is found that the presence of Al2O3nano particle led to significant improve in mechanical properties, especially at addition of 0.5 Vf% Al2O3. The ultimate tensile strength reached to 154 MPa with 10.24 % elongation, while the hardness reached to 37.7 HRB followed by decrement in wear rate. The porosity level tend to increase with increasing of Al2O3 and caused decrement in mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document