Comparison of Thermal Insulation Concrete Panel Yield Based on Natural Fibres: A Review

Author(s):  
Norsyaza Aqilah Rosli ◽  
◽  
Mohd Fahmi Abdul Rahman ◽  

Over time, many researchers have conducted studies to investigate the construction sector by assessing those related to energy, environmental and economic problems to find ways to improve global sustainability. The studies on the use of natural fibers: wheat, date palm and hemp as an insulating material in concrete panel yields have been conducted through ten previous research studies. In the market, there are various types of thermal insulation materials but these materials are sold at high prices and even worse some of them contain harmful chemicals that can threaten the health of consumers. This study is intended to identify ten previous research studies on the use of natural fibers in concrete panel yield as thermal insulation materials. Also, to analyse the data of density and coefficient of thermal conductivity accumulated through Microsoft Excel and propose the best concrete panels yield between these three types of natural fibers. The research was based on the value of density and coefficient of thermal conductivity of concrete panel yield. The results reveal that the presence of natural fibers in concrete panels can insulate heat well. The lowest thermal conductivity coefficient obtained from concrete of Hemp Fibre Gypsum (HG) with 0.051 W/mK. The composition of 35g of hemp fiber, 200g of gypsum and 130ml of water has shown that the amount of fibre and binder used plays an important role in determining the value of density and thermal conductivity. Finally, based on the analysis that has been conducted, found that density and thermal conductivity are inversely proportional when there is a change in the composition of fibers and binders in the concrete panel yields.

2015 ◽  
Vol 1124 ◽  
pp. 111-116
Author(s):  
Martina Reif ◽  
Jitka Peterková ◽  
Jiri Zach

The paper deals with the development options of particular insulation based on a blend of recycled cellulose fibers and natural (mainly) bast fibers. The paper presents the results of research work in the field of addiction thermal insulation, acoustic and mechanical properties of experimentally produced insulators on density..Keywords: Natural fibers, thermal conductivity, insulation materials, straw, fibreboard, cellulose fibers


Author(s):  
Melek Ayadi ◽  
Riadh Zouari ◽  
César Ségovia ◽  
Ayda Baffoun ◽  
Slah Msahli ◽  
...  

As the need to ensure thermal comfort in buildings is constantly evolving, new technologies continue to emerge with the aim to develop efficient thermal insulation materials. This study aims to explore a textile technology using Airlaid process to develop non-woven fabrics made of natural fibers extracted from Posidonia Oceanica’s waste for assessing their suitability for insulation products in construction field. This technology offers the feature to develop isotropic non-woven structures by orienting randomly the fibers on the fabric surface. The web composed of a mixture of Posidonia Oceanica fibers and a proportion of thermoplastic fibers is then thermally bonded in an oven followed by cooling in order to ensure the solidification of the bonding areas. The prepared panels are then analyzed for the thermal conductivity. It was found that their thermal conductivity is close to commonly used thermal insulation materials, ranging between 0.03515 W/m.K and 0.03957 W/m.K, which allows the non-woven panels to compete with widely-used insulation materials for building’s field. The second part of this work aims to determinate the Posidonia panel's resistance to five common mold types in buildings (Aspergillus niger, Penicilumfuniculosum, Trichoderma viride, Chaetomium globosum, Paecilomycesvariotii). In fact, at high moisture content, molds are likely to develop on cellulosic materials affecting indoor air quality and eventually causing a variety of health risks to occupants. However, optic microscope results showed no growth of molds on the Posidonia samples which allows conceiving reliable thermal insulation materials.


2014 ◽  
Vol 604 ◽  
pp. 285-288 ◽  
Author(s):  
Saulius Vaitkus ◽  
Rūta Karpavičiūtė ◽  
Sigitas Vėjelis ◽  
Lina Lekūnaitė

Natural fibres from flax and hemp are used as raw materials for efficient thermal insulation. In current work, tests were carried out using chopped and combed long flax fibres as well as chopped and combed long hemp fibres. Investigations have shown that thermal conductivity of natural fibres depends on their preparation method (combing, chopping) and materials density.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5616
Author(s):  
Katarzyna Uram ◽  
Maria Kurańska ◽  
Jacek Andrzejewski ◽  
Aleksander Prociak

This paper presents results of research on the preparation of biochar-modified rigid polyurethane foams that could be successfully used as thermal insulation materials. The biochar was introduced into polyurethane systems in an amount of up to 20 wt.%. As a result, foam cells became elongated in the direction of foam growth and their cross-sectional areas decreased. The filler-containing systems exhibited a reduction in their apparent densities of up to 20% compared to the unfilled system while maintaining a thermal conductivity of 25 mW/m·K. Biochar in rigid polyurethane foams improved their dimensional and thermal stability.


2013 ◽  
Vol 662 ◽  
pp. 331-334
Author(s):  
Huan Qi Zhao ◽  
Guo Zhong Li

Cement-based lightweight insulation materials were made. Cement and fly ash are main raw materials. The self-developed composite excitation agent and foaming agent are used. The method of foaming is the physical foaming. The inflection of fiber dosage on the performance of lightweight insulation materials was researched. Its influencing mechanism was discussed. Experiments show that foaming lightweight insulation materials were made with 1.22MPa bending strength, 2.95MPa compressive strength and the 0.072W/mk coefficient of thermal conductivity when the fiber mixing content is 1.2%.


2013 ◽  
Vol 1558 ◽  
Author(s):  
Qing Hao ◽  
Minqing Li ◽  
Garrett Joseph Coleman ◽  
Qiang Li ◽  
Pierre Lucas

ABSTRACTWith extremely disordered atomic structures, a glass possesses a thermal conductivity k that approaches the theoretical minimum of its composition, known as the Einstein’s limit.1 Depending on the material composition and the extent of disorder, the thermal conductivity of some glasses can be down to 0.1-0.3 W/m∙K at room temperature,2,3 representing some of the lowest k values among existing solids. Such a low k can be further reduced by the interfacial phonon scattering within a nanocomposite that can be used for thermal insulation applications. In this work, nanocomposites hot pressed from the mixture of glass nanopowder (GeSe4 or Ge20Te70Se10) and commercial SiO2 nanoparticles, or pure glass nanopowder, are investigated for the potential k reduction. It is found that adding SiO2 nanoparticles will instead increase k if the measured k values for usually porous nanocomposites are converted into those for the corresponding solid (kSolid) with Eucken’s formula. In contrast, pure glass nano-samples always show kSolid data significantly reduced from that for the starting glass. For a pure GeSe4 nano-sample, kSolid would beat the Einstein’s limit for its composition.


2021 ◽  
Vol 887 ◽  
pp. 480-486
Author(s):  
T.N. Vachnina ◽  
I.V. Susoeva ◽  
A.A. Titunin ◽  
S.V. Tsybakin

Many plant wastes are not currently used in production, they are disposed of in landfills or incinerated. The aim of this study is to develop a composite thermal insulation material from unused spinning waste of flax and cotton fibers and soft wood waste. Samples of thermal insulation materials from plant waste were made by drying using the technology of production of soft wood fiber boards. For composite board defined physico-mechanical characteristics and thermal conductivity. The experiment was carried out according to a second-order plan, regression models of the dependences of the material indicators on the proportion of the binder additive, drying temperature and the proportion of wood waste additives were developed. The study showed that composites from unused spinning waste of plant fibers and soft wood waste have the necessary strength under static bending, the swelling in thickness after staying in water is much lower in comparison with the performance of boards from other plant fillers. The coefficient of thermal conductivity of the boards is comparable with the indicator for mineral wool boards.


2020 ◽  
Vol 62 (4) ◽  
pp. 408-412
Author(s):  
Yuksel Palaci

Abstract In this study, the variation of thermal conductivity and density of 15 wt.-% boric acid - 85 wt.-% sepiolite, 30 wt.-% boric acid - 30 wt.-% sepiolite - 40 wt.-% perlite, 30 wt.-% boric acid - 30 wt.-% cordierite - 40 wt.-% perlite and 30 wt.-% boric acid - 30 wt.-% alumina - 40 wt.-% perlite compositions at 700 °C and 900 °C sintering temperatures were investigated. The results show that increasing the amount of boric acid and decreasing the sintering temperature lead to an improvement in thermal insulation properties. There is a direct relation between the thermal conductivity and density of the specimens. Both physical properties change with a change in the sintering temperature and the composition characteristics. Minimum thermal conductivity has been observed in a specimen consisting of 30 wt.-% boric acid - 30 wt.-% alumina - 40 wt.-% perlite.


Buildings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 81
Author(s):  
Cassandra Lafond ◽  
Pierre Blanchet

The energy efficiency of buildings is well documented. However, to improve standards of energy efficiency, the embodied energy of materials included in the envelope is also increasing. Natural fibers like wood and hemp are used to make low environmental impact insulation products. Technical characterizations of five bio-based materials are described and compared to a common, traditional, synthetic-based insulation material, i.e., expanded polystyrene. The study tests the thermal conductivity and the vapor transmission performance, as well as the combustibility of the material. Achieving densities below 60 kg/m3, wood and hemp batt insulation products show thermal conductivity in the same range as expanded polystyrene (0.036 kW/mK). The vapor permeability depends on the geometry of the internal structure of the material. With long fibers are intertwined with interstices, vapor can diffuse and flow through the natural insulation up to three times more than with cellular synthetic (polymer) -based insulation. Having a short ignition times, natural insulation materials are highly combustible. On the other hand, they release a significantly lower amount of smoke and heat during combustion, making them safer than the expanded polystyrene. The behavior of a bio-based building envelopes needs to be assessed to understand the hygrothermal characteristics of these nontraditional materials which are currently being used in building systems.


Sign in / Sign up

Export Citation Format

Share Document