scholarly journals Application of Taguchi Method for Electro-Fenton Degradation of SDBS Anionic Surfactant

2016 ◽  
Vol 18 (1) ◽  
pp. 79-88 ◽  

<div> <p>In this work, the effectiveness of electro-Fenton process degradation of sodium dodecylbenzene sulfonate (SDBS) anionic surfactant in acidic wastewater was investigated. Taguchi method was applied to study the effect of process parameters on oxidation of SDBS pollutant. An orthogonal array L<sub>9 </sub>experimental design that allows investigating the simultaneous variation of current density, initial acidity of wastewater, and the initial SDBS concentration was employed to evaluate the effect of these parameters as control factors. Taguchi experimental design in dynamic sense was carried out with electrolysis time chosen as signal factor. Each experiment comprises the addition of peroxide (170 mg l<sup>-1</sup>; 0.005M) as a fixed component of Fenton&#39;s reagent and NaCl (1.5 mg l<sup>-1</sup>) as supportive electrolyte. The results revealed that SDBS degradation in acidic aqueous phase, can reached high values by the electro-Fenton process. The estimation of linear model coefficients for S/N (signal to noise) ratios expression has acceptable fitness of 93.5% with the selected control and signal factors. Main effects and analysis of variance (ANOVA) indicates that the current density and the acidity have high impact on electro-Fenton degradation of SDBS process with high sum of squares and low p-values that signifies the 0.05 α-level. Moreover, Taguchi optimal analysis indicates that high S/N ratio of response can be obtained with 0.3 mA cm<sup>-2</sup> current density,<br /> pH=2 initial acidity of wastewater, and 10 mg l<sup>-1</sup> initial SDBS surfactant concentration.</p> </div> <p>&nbsp;</p>

Author(s):  
Yihan Shi ◽  
Ming Zhang ◽  
Junshan Zhao ◽  
Liu Zhang ◽  
Xumei Cui ◽  
...  

Abstract In this work, MnO2&SDBS electrodes with nano-honeycomb morphology were prepared by ultrasound-assisted electrochemical deposition using sodium dodecylbenzene sulfonate (SDBS) as a surfactant agent. The effect and mechanism of SDBS on the morphology of MnO2 nanomaterials during the preparation of MnO2 by electrochemical anodic oxidation was systematically investigated by varying the content of SDBS in the precursor solution. When the SDBS concentration is 2 g\bulletL-1, the resulting electrode has the best electrochemical performance, and the specific capacitance is up to 407 F\bulletg-1 at the current density of 1000 mAg-1. To further enhance its performance, a carbon coating layer was deposited on the surface of the electrode using a method similar to chemical vapor deposition. Finally, the MnO2&SDBS@C electrode with a three-dimensional net-to-film composite structure with a high specific surface area, hierarchical structure and interconnect with nickel foam supports were obtained. The electrode has excellent electrochemical performance, and the specific capacitance is still up to 289 Fg-1 at a high current density of 5000 mAg-1. Furthermore, the specific capacitance of the electrode was maintained at 76.7% after 5000 cycles of charging and discharging at a current density of 2000 mAg−1.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2542
Author(s):  
Karol Ulatowski ◽  
Radosław Jeżak ◽  
Paweł Sobieszuk

(1) The generation of nanobubbles by electrolysis is an interesting method of using electrical energy to form bubble nuclei, effectively creating a multiphase system. For every process, the effectiveness of nanobubble generation by electrolysis depends on various process parameters that impact should be determined. (2) In this work, the electrolytic generation of hydrogen and oxygen bubbles was performed in a self-built setup, in which a Nafion membrane separated two chambers. The generation of bubbles of both gases was investigated using Box–Behnken experimental design. Three independent variables were salt concentration, current density, and electrolysis time, while the dependent variables were Sauter diameters of generated bubbles. An ANOVA analysis and multivariate regression were carried out to propose a statistical and power model of nanobubble size as a process parameter function. (3) The generation of bubbles of hydrogen and oxygen by electrolysis showed that different factors or their combinations determine their size. The results presented in this work proved to be complementary to previous works reported in the literature. (4) The Sauter diameter of bubbles increases with salt concentration and stays constant with increasing current density in investigated range. The proposed correlations allow the Sauter diameters of nanobubbles generated during electrolysis to be predicted.


Author(s):  
Luciana Igarashi-Mafra ◽  
Edmilson César Bortoletto ◽  
Maria Angelica Simões Dornella Barros ◽  
Amanda Cristina Alfredo Contrucci Sorbo ◽  
Naiara Aguiar Galliani ◽  
...  

Effluents from radiographic X-ray film developing processes feature a high contaminant load (COD about 70000 mg/L and total phenols concentration about 16956 mg/L). Photo-Fenton's are potentially useful oxidation processes for destroying toxic organic compounds in water. In these reactions, hydrogen peroxide is combined with ferrous or ferric iron in the presence of light to generate hydroxyl radicals (·OH). The photo-Fenton process was explored as a photochemical treatment to degrade wastewater from radiographic X-ray film developing processes coming from odontologic clinics. A response surface methodology was applied to optimize the photo-Fenton oxidation process conditions using total phenol removal as the target parameter to be optimized, and the reagent concentrations, as related to the initial concentration of organic matter in the effluent, and time and pH as the control factors to be optimized. The best results in terms of maximal total phenol removal and economic process were achieved when wastewater samples were treated at pH 5 in the presence of hydrogen peroxide and iron in the ratios [total phenols]:[H2O2] 1:3 w/w and [Fe2+]:[H2O2] 1:18 w/w and time 1 h.


Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2011 ◽  
Vol 27 (3) ◽  
pp. 309-320 ◽  
Author(s):  
C.-Y. Fan ◽  
C.-K. Chao ◽  
C.-C. Hsu ◽  
K.-H. Chao

ABSTRACTAnterior Lumbar Interbody Fusion (ALIF) has been widely used to treat internal disc degeneration. However, different cage positions and their orientations may affect the initial stability leading to different fusion results. The purpose of the present study is to investigate the optimum cage position and orientation for aiding an ALIF having a transfacet pedicle screw fixation (TFPS). A three-dimensional finite element model (ALIF with TFPS) has been developed to simulate the stability of the L4/L5 fusion segment under five different loading conditions. The Taguchi method was used to evaluate the optimized placement of the cages. Three control factors and two noise factors were included in the parameter design. The control factors included the anterior-posterior position, the medio-lateral position, and the convergent-divergent angle between the two cages. The compressive preload and the strengths of the cancellous bone were set as noise factors. From the results of the FEA and the Taguchi method, we suggest that the optimal cage positioning has a wide anterior placement, and a diverging angle between the two cages. The results show that the optimum cage position simultaneously contributes to a stronger support of the anterior column and lowers the risk of TFPS loosening.


This research is a study of the turning process by testing with brass material. There are three control factors: spindle of speed, feed rate, and depth of cut respectively. The turning process requires variable control,affect the quality of production productivity and production costplanning an experiment with the Taguchi Method help in theexperiment the analysis of variance, orthogonal array, and signal and noise ratios were considered as an experiment and survey of brass turning characteristics to determine the lowest material removal rate.The results obtained from the experiment were used to repeat the experiment for confirmation. This requires the turning process to be reliable and optimized


Sign in / Sign up

Export Citation Format

Share Document