scholarly journals Modelling the removal of Lead from synthetic contaminated water by activated carbon from biomass of Diplocyclos Palmatus by RSM

2019 ◽  

<p>Diplocyclos Palmatus biomass activated carbon (DPAC) was used in this work to remove lead (II) ion from the synthetic wastewater. The DPAC was characterized for structural, surface morphology by SEM, functional group was analyzed by FT-IR and XRD analysis. Removal of Pb2+ was studied by batch method and various experimental parameters namely effect of Pb2+ concentration, contact time, effect of temperature; pH and effect of matrix were also studied. Kinetic modelling studies showed that the adsorption of Pb2+ ion follows pseudo second order mechanism and Langmuir isotherm model was found to fit better for this study. Thermodynamic study shows a negative value for ΔG indicating the process is spontaneous. Box Behnken Design using response surface methodology as DOE was carried out in this work. RSM modelling was found to be successful in predicting the removal efficiency with R2 greater than 0.95.</p>

2020 ◽  
Vol 16 (7) ◽  
pp. 880-892
Author(s):  
Şerife Parlayıcı ◽  
Kübra Tuna Sezer ◽  
Erol Pehlivan

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents. Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process. Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions. Conclusıon: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.


Author(s):  
Joshua O. Ighalo ◽  
Ibrahim O. Tijani ◽  
Oluwaseun J. Ajala ◽  
Fisayo O. Ayandele ◽  
Omodele A. Eletta ◽  
...  

Background: Modified bio-based adsorbents from plant sources can be used for pollution remediation by adsorption due to their low cost and availability in large quantities. Objective: In this study, the competitive biosorption of Pb(II) and Cu(II) by Micropogonias undulates functionalised fish scales (FFS) was conducted. The functionalisation was done by wet impregnation with Fe2+. Method: The biosorbent was characterised by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) and Branueur–Emmett–Teller (BET) analyses. Results: The major constituents in the FFS were calcium and phosphorus from the collagen and apatite on the scales. Optimum removal efficiency for both metals was >99% at 10 g/l dosage. It was observed that the Langmuir isotherm model and the pseudo second order kinetics model were the best fit for the experimental data. The monolayer adsorption capacity of FFS for Pb(II) and Cu(II) was observed to be 96.15 mg/g and 100 mg/g respectively. Conclusion: The study revealed that the competitive biosorption of heavy metals can be achieved (at a good adsorption capacity) using functionalised Micropogonias undulates fish scales.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1401 ◽  
Author(s):  
Ricardo Coimbra ◽  
Carla Escapa ◽  
Nadyr Vázquez ◽  
Guillermo Noriega-Hevia ◽  
Marta Otero

In the present work, the adsorptive removal of diclofenac from water by biosorption onto non-living microalgae biomass was assessed. Kinetic and equilibrium experiments were carried out using biomass of two different microalgae strains, namely Synechocystis sp. and Scenedesmus sp. Also, for comparison purposes, a commercial activated carbon was used under identical experimental conditions. The kinetics of the diclofenac adsorption fitted the pseudo-second order equation, and the corresponding kinetic constants indicating that adsorption was faster onto microalgae biomass than onto the activated carbon. Regarding the equilibrium results, which mostly fitted the Langmuir isotherm model, these pointed to significant differences between the adsorbent materials. The Langmuir maximum capacity (Qmax) of the activated carbon (232 mg∙g−1) was higher than that of Scenedesmus sp. (28 mg∙g−1) and of Synechocystis sp. (20 mg∙g−1). In any case, the Qmax values determined here were within the values published in the recent scientific literature on the utilization of different adsorbents for the removal of diclofenac from water. Still, Synechocystis sp. showed the largest KL fitted values, which points to the affinity of this strain for diclofenac at relative low equilibrium concentrations in solution. Overall, the results obtained point to the possible utilization of microalgae biomass waste in the treatment of water, namely for the adsorption of pharmaceuticals.


2019 ◽  
Vol 20 (1) ◽  
pp. 16 ◽  
Author(s):  
Duha Hussien Attol ◽  
Hayder Hamied Mihsen

Rice husk ash (RHA) was used to prepare sodium silicate, which in turn was functionalized with 3-(chloropropyl)triethoxysilane employing the sol-gel technique to form RHACCl. Chloro group in RHACCl was replaced with iodo group forming RHACI. Ethylenediamine was immobilized on RHACI in order to prepare it for the reaction with salicylaldehyde to form a silica derivative-salen. FT-IR analysis indicated the presence of secondary amine and –NH and C=N absorption bands. XRD analysis revealed the occurrence of the broad diffused peak with maximum intensity at 22–23° (2θ). BET measurements showed also that the surface area of the prepared compound is 274.55 m2/g. Elemental analysis proved the existence of nitrogen in the structure of the prepared compound. The silica derivative-salen showed high potential for extraction and removal of heavy contaminating metal ions Ni(II), Cu(II), and Co(II) from aqueous solutions. The kinetic study demonstrates that the adsorption of the metal ions follows the pseudo-second order.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1449 ◽  
Author(s):  
Xianchun Hu ◽  
Xianfeng Du

Microporous starch (MPS) granules were formed by the partial hydrolysis of starch using α–amylase and glucoamylase. Due to its biodegradability and safety, MPS was employed to adsorb tea polyphenols (TPS) based on their microporous characteristics. The influences of solution pH, time, initial concentration and temperature on the adsorptive capacity were investigated. The adsorption kinetics data conformed to the pseudo second–order kinetics model, and the equilibrium adsorption data were well described by the Langmuir isotherm model. According to the fitting of the adsorption isotherm formula, the maximum adsorption capacity of TPS onto MPS at pH 6.7 and T = 293 K was approximately 63.1 mg/g. The thermodynamic parameters suggested that the adsorption of TPS onto MPS was spontaneous and exothermic. Fourier transform infrared (FT–IR) analysis and the thermodynamics data were consistent with a physical adsorption mechanism. In addition, MPS-loaded TPS had better stability during long-term storage at ambient temperature.


2015 ◽  
Vol 72 (6) ◽  
pp. 983-989 ◽  
Author(s):  
Zheng-ji Yi ◽  
Jun Yao ◽  
Yun-fei Kuang ◽  
Hui-lun Chen ◽  
Fei Wang ◽  
...  

The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
America R. Vazquez-Olmos ◽  
Mohamed Abatal ◽  
Roberto Y. Sato-Berru ◽  
G. K. Pedraza-Basulto ◽  
Valentin Garcia-Vazquez ◽  
...  

Adsorption of Pb(II) from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn) was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), micro-Raman, and vibrating sample magnetometry (VSM). XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II) were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II) on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.


2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


2019 ◽  
Vol 51 (1) ◽  
pp. 93-100
Author(s):  
Irena Ilic ◽  
Natasa Jovic-Jovicic ◽  
Predrag Bankovic ◽  
Zorica Mojovic ◽  
Davor Loncarevic ◽  
...  

Montmorillonite (Mt) and acid modified montmorillonite (MtA) were tested as nicotine adsorbents. The samples were characterized using FT-IR spectroscopy and low temperature nitrogen physisorption. Nicotine adsorption was performed with respect to contact time, pH and initial nicotine concentration. The kinetics of adsorption obeyed the pseudo-second-order kinetics. The optimal pH values for nicotine adsorption were 6 and 9 for Mt and MtA, respectively. The isotherms related to adsorption on Mt at pH = 6 and 9 as well as for MtA at pH=6 were best fitted with Sips isotherm model, while adsorption onto MtA at pH=9 obeyed Langmuir isotherm model.


Sign in / Sign up

Export Citation Format

Share Document