scholarly journals Reactive power transformation using а passive electronic transducer

Author(s):  
Shinderuk Svitlana Shinderuk ◽  
Marina Volosyuk ◽  
Evgen Chaplygin ◽  
Igor Bilash

Transformation of reactive power into active power, which can be used to perform work for various purposes, is of practical use. Goal. The aim of the work is analysis of the processes of resonant conversion of reactive power into active power in the proposed converter circuit. Methodology. A practical solution to this problem can be real-ized using a converter circuit consisting of two in-ductively coupled parallel and series resonant circuits. The use of a parallel circuit with resonance currents minimizes the impact on the processes in the reactive power source. The use of a series circuit with a voltage resonance allows maximizing the original active power in the converter load. Results. The simplest scheme of a passive electronic converter of reactive power into active power is proposed. The conditions are determined, whose fulfillment minimizes the influence of the proposed scheme on the processes in the reactive power source at the maxi-mum current in the converter load. Originality. Efficiency of the device under test means maximum cur-rent and power in the load with minimum impact on the inductance of the reactive power source. Practical value. The parameters of a real circuit have been calculated, which allows for practically lossless conversion of reactive power into active power with a minimum effect on the current in the source.

2014 ◽  
Vol 533 ◽  
pp. 397-400 ◽  
Author(s):  
Chi Jui Wu ◽  
Yu Wei Liu ◽  
Shou Chien Huang

To modify the power factor and balance the three-phase currents simultaneously, this paper proposes the instantaneous compensator to calculate the compensation current. The instantaneous compensator utilizes two-dimensional instantaneous space vector and setting the active power as a constant for each cycle which can improve power quality effectively. Moreover, the instantaneous compensator requires an independent power source, whose capacity can be reduce by using a static var compensator (SVC). An SVC does not interfere with the capability of the instantaneous compensator. Field measurement data were analyzed. Simulation results confirmed the feasibility of correcting the power factor and balancing load currents simultaneously using the proposed method.


2016 ◽  
Vol 12 (02) ◽  
pp. 10
Author(s):  
Liang Sun ◽  
Xusheng Jian ◽  
Wenqiang Yuan

In the paper, the influence of harmonic was taken into consideration during the realization of the AVC system in the power grid of Wuhu region, relevant study and development were conducted from the perspective of application and practice, and concrete proposal of practicable reactive voltage power optimization was put forward. The system adopted two-layer control plan: whole-network coordination layer and execution layer within transformer substation. Optimization algorithm adopted the reactive power optimization method with relaxed constraints so as to improve the convergence and computation speed of reactive power optimization. To control the impact of harmonic, a hybrid active power filter scheme which was made up of passive power filter and active power filter was adopted, thus improving the cost performance of the AVC system. The result of applying the AVC system in the power grid of Wuhu region shows that the system is stable and reliable, obviously decreasing the operation times of equipment and improving the voltage qualified rate and power factor of panel point.


2014 ◽  
Vol 960-961 ◽  
pp. 1077-1080 ◽  
Author(s):  
Bo Lun Wang

Near the load of distribution network access distributed networks, the entire distribution network load distribution will change, system trend then change, then the trend of the distribution network can also be changed from the original "one-way flow" to "two-way flow". For synchronous generator connected to the power distribution network, the input active power and reactive power at the same time to the system, can reduce the loss and the voltage distribution network can play a supporting role, but for asynchronous induction generator connected to the power distribution network, the input to the system active power and reactive power absorption, reduce the power factor of the grid. By trend analysis found that introducing asynchronous induction generator to increase distribution network loss, deterioration in transmission line voltage level. Distributed generators after introducing the distribution network could reduce may also increase the system network loss.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1405 ◽  
Author(s):  
Xudong Cao ◽  
Kun Dong ◽  
Xueliang Wei

Active power filters (APFs) are dynamic power electronic devices that suppress harmonics and reactive power. To simplify the detection and extraction of traditional APF harmonics and reactive current, this paper proposes a direct source current control based on a three-phase three-wire shunt APF. The compensation principle and control method of the source current are analyzed systematically. The currents can be controlled without static errors by a proportional-integral (PI) controller in d-q rotating coordinates. Therefore, the compensation accuracy and dynamic performance of the system can be improved by the control strategy. Moreover, considering the grid voltage fluctuations, a droop regulator is proposed to address the impact of DC-link voltages on APF power losses and compensation performance. The regulator is combined with a traditional voltage outer loop PI control to achieve a comprehensive optimization between the power loss and compensation performance of the APF system. Finally, the inner current loop and the outer voltage loop form a double closed-loop cascade PI control structure to achieve the control effect of the APF. Simulation and experimental results verified the validity and feasibility of the APF control approach.


2014 ◽  
Vol 644-650 ◽  
pp. 3806-3809
Author(s):  
San Ming Liu ◽  
Zhi Jie Wang ◽  
Hong Wang ◽  
Shu Ting Chen ◽  
Ying Li

It studies the impacts of the wind speed disturbance such as the gradient wind and gust on the active power, reactive power and voltage of the system. In the process of wind speed disturbance, double fed wind turbine increases or reduces the reactive output of wind turbine timely according to the changes of system voltage, ensure the machine terminal voltage to operate in the normal range .


2019 ◽  
Vol 30 (4) ◽  
pp. 1-12
Author(s):  
N. Mbuli ◽  
A. Dyantyi ◽  
J.H.C. Pretorius

Transmission interconnecting lines (called interconnectors in this study) are built to facilitate the exchange of active and reactive power between two areas of a network. Step-up and step-down transformers are required at the ends of the interconnector when interconnectors are at a different voltage, usually higher, than the networks to be connected. A study was carried out to examine the impact on active power losses of a combination of leakage reactances of the transformers at the ends of an interconnector. The study assessed whether combinations can lead to different levels of active power losses and can thus affect the efficiency of the system. It was found that the combinations of reactance have a tangible impact on the power that flows through the interconnector and, consequently, on the sharing of apparent power between the interconnector and the rest of the network. The total active power losses varied appreciably with the various combinations of reactances, resulting in the life-cycle cost of active power losses also varying with the combinations. The study showed that the combination needs to be carefully made, considering that such a choice can have a significant impact on techno-economic aspects of the power system.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3437 ◽  
Author(s):  
Dario Garozzo ◽  
Giuseppe Marco Tina

The increasing presence of distributed generation (DG) in the electrical grid determines new challenges in grid operations, especially in terms of voltage and frequency regulation. Recently, several grid codes have required photovoltaic (PV) inverters to control their reactive power output in order to provide voltage regulation services, and the allocation of a certain amount of active power reserve for fast frequency response (FFR) service during under-frequency contingencies is needed. This requirement involves a significant waste of energy for PV systems, due to the necessity to constantly operate in de-loaded mode, under normal operating conditions. In addition, the variability of the irradiance can affect the correct amount of active power reserve that the system can provide in the moments after an under-frequency occurrence. The increasing number of battery energy storage systems (BESSs), coupled to PV systems, can be used to provide a worthy contribution to this frequency regulation service. The aim of this paper is to analyze the efficiency of active power reserve provided by a BESS connected to the DC bus of a non-ideal grid-connected PV inverter, taking into account the impact of reactive power control. For this purpose, the contribution of BESSs to frequency regulation is discussed and, starting from an existing model of real inverter, an analytical formulation for active power reserve evaluation is presented. Results concerning the impact of reactive power control are also given. Finally, the possibility for a low voltage (LV) grid with aggregated PV systems and BESSs to contribute to grid active power reserve is considered. Different voltage control strategies are compared, defining a helpful new parameter.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Andrea Mariscotti

<p class="Abstract">In electrified railways, harmonic active power terms can be significant in the order of the uncertainty required by the EN 50463-2 standard for power and energy measurements in railways. Nonactive power terms (encompassing reactive and distortion harmonic terms) are much more significant than the sole fundamental reactive power. This work considers the implementation of the EN 50463-2 energy measurement function, including the criteria for the significance of the measured and calculated terms, and it carries out a Monte Carlo analysis to assess the impact of harmonic power terms on the measured energy and its uncertainty.</p>


Author(s):  
Yu. F. Yu. F. Romaniuk ◽  
О. V. Solomchak ◽  
М. V. Hlozhyk

The issues of increasing the efficiency of electricity transmission to consumers with different nature of their load are considered. The dependence of the efficiency of the electric network of the oil field, consisting of a power line and a step-down transformer, on the total load power at various ratios between the active and reactive components of the power is analyzed, and the conditions under which the maximum transmission efficiency can be ensured are determined. It is shown by examples that the power transmission efficiency depends not only on the active load, but also largely on its reactive load. In the presence of a constant reactive load and an increase in active load, the total power increases and the power transmission efficiency decreases. In the low-load mode, the schedule for changing the power transmission efficiency approaches a parabolic form, since the influence of the active load on the amount of active power loss decreases, and their value will mainly depend on reactive load, which remains unchanged. The efficiency reaches its maximum value provided that the active and reactive components of the power are equal. In the case of a different ratio between them, the efficiency decreases. With a simultaneous increase in active and reactive loads and a constant value of the power factor, the power transmission efficiency is significantly reduced due to an increase in losses. With a constant active load and an increase in reactive load, efficiency of power transmission decreases, since with an increase in reactive load, losses of active power increase, while the active power remains unchanged. The second condition, under which the line efficiency will be maximum, is full compensation of reactive power.  Therefore, in order to increase the efficiency of power transmission, it is necessary to compensate for the reactive load, which can reduce the loss of electricity and the cost of its payment and improve the quality of electricity. Other methods are also proposed to increase the efficiency of power transmission by regulating the voltage level in the power center, reducing the equivalent resistance of the line wires, optimizing the loading of the transformers of the step-down substations and ensuring the economic modes of their operation.


Sign in / Sign up

Export Citation Format

Share Document