scholarly journals What Do We Know About Toxigenic, Bloom-Forming Cyanobacteria at the Beginning of The 21st Century?

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Magdalena Toporowska

Cyanobacteria are microscopic, prokaryotic organisms capable of mass development in aquatic ecosystems. Cyanobacterial blooms, observed often in various fresh and brackish waters, are growing global problem due to the eutrophication process and climate changes. Different cyanobacterial species may produce wide range of various biologically active secondary metabolites, which may be harmful to aquatic organisms, animals and humans. Microcystins (MCs) are the most known and frequently studied cyanobacterial compounds classified to cyanotoxins. But cyanobacteria are producers of several hundred of other toxins (e.g. nodularins, cylindrospermopsins, anatoxins, saxitoxins), and potentially harmful substances (e.g. oligopeptides other than MCs). In this paper, the present knowledge about cyanobacterial blooms, toxins and other metabolites is shown concisely with references to the latest review reports broadly describing the issues discussed. Human health risks caused by cyanobacteria is also presented

2021 ◽  
Vol 3 (1) ◽  
pp. 54-60
Author(s):  
Didem Gökçe

The quick improvement of nanotechnology permits a wide range of utilization of engineered nanoparticles, such as personal care products, medicals, optics, electronics, and automobiles. The nanoparticles manufactured from Ag, Au carbon-nanotube, ZnO, SiO2, TiO2, Cu, Ni, and magnetic ferrites are among the generally utilized in products. The nanoparticles are produced and utilized in large quantities and release into marine and freshwater ecosystems during production, use, discharge, treatment, and deposition. Those particles with a mean size of 1 nm - 100 nm are of potential environmental risks because of their particular qualifications and high reactivity although their great economical values. Based on the studies, the size, shape, and surface physical and chemical characteristics of the nanoparticles show the level of aggregation, solubility, structural and chemical composition, the importance of the use of nanoparticles, and their toxicity with biological systems. Nanoparticles can potentially cause adverse impacts on tissue, cellular, genetic materials, and protein- enzyme levels due to their unique physical and chemical qualifications. In this study, the effects of nanoparticles on aquatic organisms and aquatic ecosystems were evaluated.


Author(s):  
Merve Abar Gürol ◽  
Sezgi Arman ◽  
Nazan Deniz Yön

Reproduction is a critical and sensitive process for population continuity of the externally fertilizing aquatic organisms. Environmental pollution may adversely effect the reproductive activities of fish. Pesticides are the mobile chemicals that are known to pollute the aquatic ecosystems. Mancozeb is an ethylene-bis-dithiocarbamate (EBDC) fungicide that is frequently used to protect fruits, vegetables, vineyards and field crops against a wide range of fungal diseases. The aim of the current work was to evaluate the acute toxic effects of mancozeb on the testis tissues of zebrafish (Danio rerio). Zebrafish were exposed to 5 ppm and 7.5 ppm of mancozeb concentrations for five days. Testis tissues were removed and fixed in 10% neutral buffered formalin solution. Specimens were embedded in paraffin and 5 μm serial sections were stained with hematoxylin and eosin. The control and the experimental samples were investigated by light microscopy and histopathological changes were evaluated. Mancozeb gave rise to degenerative spermatogenic cells, seminiferous tubule disorganizations, fibrosis, hemorrhage, vacuolization, hypertrophy of spermatocytes, edema, decreased spermatogenic cell clusters and sperms, pyknotic and karyolytic nuclei. These results showed that mancozeb could interrupt the reproductive activity and decrease the fertilization ratio of zebrafish.


2010 ◽  
Vol 1 (1) ◽  
pp. 97 ◽  
Author(s):  
Stéphan Jacquet ◽  
Takeshi Miki ◽  
Rachel Noble ◽  
Peter Peduzzi ◽  
Steven Wilhelm

Over the last two decades, viruses in aquatic systems have been observed to modify, influence and control aquatic systems. Since the determination decades ago that viruses were abundant in aquatic ecosystems, researchers have demonstrated that viruses are pervasive and dynamic across the expanse and depth of all aquatic systems as well as at the water-sediment interface. There have been a wide range of methodological advancements during this time. To date, aquatic viruses have been suggested to play vital roles in global and small-scale biogeochemical cycling, community structure, algal bloom termination, gene transfer, and evolution of aquatic organisms. Even in harsh and difficult to study environments, aquatic and benthic viruses have been demonstrated to be major players in carbon cycling and recycling of nutrients from organic material. Taxonomic and metagenomic research has shown us that there are major globally-distributed groups, but that their genomes are filled with sequence information that has no similarity to sequences in existing bioinformatic databases. And while the field of viral ecology has expanded exponentially since the late 1980s, there is much that we do not yet understand about virusmediated processes in aquatic systems. Important near-term steps include the combination of advanced metagenomic techniques with studies of function and population control, standardization of methodological approaches to facilitate global data acquisition without concern over methods-based artefacts, understanding of viral life strategies and their triggers, and the role of viruses in the transformation of organic matter. The purpose of this manuscript is to bring the reader a review of the recent advances in aquatic viral ecology in light of new areas of research, applications of viral ecology to real-world problems, and refinement of models of viral interactions on a range of scales.


2011 ◽  
Vol 77 (24) ◽  
pp. 8744-8753 ◽  
Author(s):  
Olga Savichtcheva ◽  
Didier Debroas ◽  
Rainer Kurmayer ◽  
Clement Villar ◽  
Jean Philippe Jenny ◽  
...  

ABSTRACTThe variability of spatial distribution and the determinism of cyanobacterial blooms, as well as their impact at the lake scale, are still not understood, partly due to the lack of long-term climatic and environmental monitoring data. The paucity of these data can be alleviated by the use of proxy data from high-resolution sampling of sediments. Coupling paleolimnological and molecular tools and using biomarkers such as preserved DNA are promising approaches, although they have not been performed often enough so far. In our study, a quantitative PCR (qPCR) technique was applied to enumerate total cyanobacterial and total and toxicPlanktothrixcommunities in preserved DNA derived from sediments of three lakes located in the French Alps (Lake Geneva, Lake Bourget, and Lake Annecy), containing a wide range of cyanobacterial species. Preserved DNA from lake sediments was analyzed to assess its quality, quantity, and integrity, with further application for qPCR. We applied the qPCR assay to enumerate the total cyanobacterial community, and multiplex qPCR assays were applied to quantify total and microcystin-producingPlanktothrixpopulations in a single reaction tube. These methods were optimized, calibrated, and applied to sediment samples, and the specificity and reproducibility of qPCR enumeration were tested. Accurate estimation of potential inhibition within sediment samples was performed to assess the sensitivity of such enumeration by qPCR. Some precautions needed for interpreting qPCR results in the context of paleolimnological approaches are discussed. We concluded that the qPCR assay can be used successfully for the analysis of lake sediments when DNA is well preserved in order to assess the presence and dominance of cyanobacterial andPlanktothrixcommunities.


2020 ◽  
Vol 14 (2) ◽  
pp. 15
Author(s):  
Zaidah Zainal ariffin

Fungi is known to produce a wide range of biologically active metabolites and enzymes. Enzymes produced by fungi are utilized in food and pharmaceutical industries because of their rich enzymatic profile. Filamentous fungi are particularly interesting due to their high production of extracellular enzymes which has a large industrial potential. The aim of this study is to isolate potential soil fungi species that are able to produce functional enzymes for industries. Five Aspergillus species were successfully isolated from antibiotic overexposed soil (GPS coordinate of N3.093219 E101.40269) by standard microbiological method. The isolated fungi were identified via morphological observations and molecular tools; polymerase chain reactions, ITS 1 (5’- TCC GTA GGT GAA CCT GCG G3’) forward primer and ITS 4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) reverse primer. The isolated fungi were identified as Aspergillus sydowii strain SCAU066, Aspergillus tamarii isolate TN-7, Aspergillus candidus strain KUFA 0062, Aspergillus versicolor isolate BAB-6580, and Aspergillus protuberus strain KAS 6024. Supernatant obtained via submerged fermentation of the isolated fungi in potato dextrose broth (PDB) and extracted via centrifugation was loaded onto specific media to screen for the production of xylanolytic, cellulolytic and amylolytic enzymes. The present findings indicate that Aspergillus sydowii strain SCAU066 and Aspergillus versicolor isolate BAB-6580 have great potential as an alternative source of xylanolytic, cellulolytic and amylolytic enzymes.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 389-393
Author(s):  
D.V. Mitrofanov ◽  
N.V. Budnikova

The drone brood contains a large number of substances with antioxidant activity. These substances require stabilization and strict adherence to storage conditions. Among these substances are unique decenoic acids, the content of which is an indicator of the quality of drone brood and products based on it. The ability of drone brood to reduce the manifestations of oxidative stress is shown. There are dietary supplements for food and drugs based on drone brood, which are used for a wide range of diseases. Together with drone brood, chitosan-containing products, propolis, royal jelly can be used. They enrich the composition with their own biologically active substances and affect the preservation of the biologically active substances of the drone brood. Promising are the products containing, in addition to the drone brood, a chitin-chitosan-melanin complex from bees, propolis, royal jelly. The chitin-chitosan-melanin complex in the amount of 5% in the composition of the adsorbent practically does not affect the preservation of decenic acids, while in the amount of 2% and 10% it somewhat worsens. The acid-soluble and water-soluble chitosan of marine crustaceans significantly worsens the preservation of decenoic acids in the product. Drone brood with royal jelly demonstrates a rather high content of decenoic acids. When propolis is introduced into the composition of the product, the content of decenoic acids increases according to the content of propolis.


2019 ◽  
Vol 26 (23) ◽  
pp. 4323-4354 ◽  
Author(s):  
Ana Cristina Lima Leite ◽  
José Wanderlan Pontes Espíndola ◽  
Marcos Veríssimo de Oliveira Cardoso ◽  
Gevanio Bezerra de Oliveira Filho

Background: Privileged motifs are recurring in a wide range of biologically active compounds that reach different pharmaceutical targets and pathways and could represent a suitable start point to access potential candidates in the neglected diseases field. The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness, affordable methods of synthesis and allow a way to emergence of resistant strains. Due the lack of financial return, only few pharmaceutical companies have been investing in research for new therapeutics for neglected diseases (ND). Methods: Based on the literature search from 2002 to 2016, we discuss how six privileged motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone are particularly recurrent in compounds active against some of neglected diseases. Results: It was observed that attention was paid particularly for Chagas disease, malaria, tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among the ND, antitrypanosomal and antiplasmodial activities were between the most searched. Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also explored in the ND field. Conclusion: Some described compounds, appear to be promising drug candidates, while others could represent a valuable inspiration in the research for new lead compounds.


2020 ◽  
Vol 26 (27) ◽  
pp. 3234-3250
Author(s):  
Sushil K. Kashaw ◽  
Prashant Sahu ◽  
Vaibhav Rajoriya ◽  
Pradeep Jana ◽  
Varsha Kashaw ◽  
...  

Potential short interfering RNAs (siRNA) modulating gene expression have emerged as a novel therapeutic arsenal against a wide range of maladies and disorders containing cancer, viral infections, bacterial ailments and metabolic snags at the molecular level. Nanogel, in the current medicinal era, displayed a comprehensive range of significant drug delivery prospects. Biodegradation, swelling and de-swelling tendency, pHsensitive drug release and thermo-sensitivity are some of the renowned associated benefits of nanogel drug delivery system. Global researches have also showed that nanogel system significantly targets and delivers the biomolecules including DNAs, siRNA, protein, peptides and other biologically active molecules. Biomolecules delivery via nanogel system explored a wide range of pharmaceutical, biomedical engineering and agro-medicinal application. The siRNAs and DNAs delivery plays a vivacious role by addressing the hitches allied with chronic and contemporary therapeutic like generic possession and low constancy. They also incite release kinetics approach from slow-release while mingling to rapid release at the targets will be beneficial as interference RNAs delivery carriers. Therefore, in this research, we focused on the latest improvements in the delivery of siRNA loaded nanogels by enhancing the absorption, stability, sensitivity and combating the hindrances in cellular trafficking and release process.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Chih-Yu Chung ◽  
Yu-Ju Chen ◽  
Chia-Hui Kang ◽  
Hung-Yun Lin ◽  
Chih-Ching Huang ◽  
...  

Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.


Sign in / Sign up

Export Citation Format

Share Document