Assessment of male reproductive function and prevention of androgen deficiency

Author(s):  
P. A. Vuytsik

Introduction. Reproductive problems in marriage are an important component of demographic processes; therefore, attempts to resolve them have not only medical but also social significance. The state of male reproductive health plays an important role in demographic indicators, in particular, in population reproduction. This dictates the need to increase the volume of preventive measures, which requires early detection of reproductive disorders due to the impact of environmental factors, including occupational ones, that have a harmful effect on men. The aim of the study is to develop a prevention program aimed at preserving and improving the reproductive health of employees engaged in harmful working conditions. Materials and methods. To predict the quality of health of a future individual, it is necessary to consider many risk factors that can participate in the development of human pathology. Methods for studying reproductive health disorders in men include both conventional, classical methods of examining men by urologists, andrologists, and expert ones, which allow us to find out the role of harmful factors in the development of reproductive disorders of professional etiology by specialists in occupational medicine. The implementation of a reproductive health program requires monitoring the progress of the actions taken and evaluating their effectiveness. Results. Implementing a reproductive health program requires monitoring the progress of actions and evaluating their effectiveness. Conclusions. The ability to assess the risk of damage to reproductive health and the health of the offspring makes it possible to manage this risk, to prevent and reduce the levels of occupationally determined morbidity and morbidity associated with exposure to harmful factors.

Author(s):  
Ninel Shepelska ◽  
Mykola Prodanchuk ◽  
Yana Kolianchuk

Currently, one of the main threats to human health is undoubtedly endocrine disruptors (ED), since they directly disrupt the processes of homeostasis maintenance, controlled by the endocrine system, the purpose of which is to maintain normal functions and development in a constantly changing environment. Pesticides can disrupt the physiological functioning of many endocrine axes, including the endocrine mechanisms that ensure reproductive health. It should be noted that research aimed at preventing chemically induced reproductive disorders in the human population is one of the central areas of preventive medicine, both in terms of their importance and the complexity of the tasks being solved. Analysis and generalization of the results of our own long-term studies have shown that the selective, and, therefore, the most dangerous toxicity of pesticides for the reproductive system is determined by endocrine-mediated mechanisms of etiopathogenesis. The low level of doses inducing pathological changes in reproductive function in our studies fully confirms one of the universal signs inherent in endocrine-distruptive compounds. The above examples demonstrate a wide range of possible endocrine-mediated mechanisms of reproductive toxicity of pesticides - endocrine disruptors. However, it is very important to note that low doses may be more effective in changing some endpoints compared to high (toxic) doses. Currently, several mechanisms have been identified and studied that demonstrate how hormones and ED induce non-monotonic reactions in animal cells, tissues and organs. The reproductive system, the functioning of which is ensured by a fine balancing of the action of androgens and estrogens, is one of the systems that presents a unique opportunity for modeling a non-monotonic dose dependence. All of the above indicates the extreme danger of the impact of hormonally active agents on the reproductive health of a person and his offspring. At the same time, the threat of endocrine-mediated disorders for subsequent generations can also be realized through the induction of mechanisms of development of epigenetic transgenerational effects. Taking into account the results of studies of the mechanisms of the ED destructive action, as well as their ability to induce non-monotonic dose dependence at an extremely low dose level, it should be admitted that, apparently, there is a need to revise the paradigm of methodological approaches to the regulation of pesticides with endocrine-disruptive properties. Key words: pesticides, endocrine disruptors, reproductive system


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Mary K. Samplaski ◽  
Trustin Domes ◽  
Keith A. Jarvi

Introduction. Chlamydia trachomatis is an established cause of tubal factor infertility; however its role in male fertility is not as clear. We sought to determine the prevalence of Chlamydia in infertile men and evaluate its impact on male reproductive potential. Materials and Methods. We compared the incidence of Chlamydia in our infertile male population with that reported in the literature. We then reviewed the impact of Chlamydia infection on male fertility. Results. The incidence of Chlamydia infection in our population of infertile men was 0.3%. There is considerable variability in the reported incidence, likely due to variation in the population studied, and detection technique. The optimal testing method and sample are presently unclear. The effect of Chlamydia on male reproductive function is also variable in the literature, but appears to be relatively minimal and may be related primarily to sperm DNA fragmentation or female partner transmission. Conclusions. The prevalence of Chlamydia in the infertile male population is low and routine testing is not supported by the literature. For high-risk infertile men, nucleic acid testing of urine +/− semen is the most sensitive method to detect Chlamydia. A validated testing system for semen needs to be developed, so that a standardized methodology can be recommended. In this way the full implications of Chlamydia on male fertility can be elucidated.


Author(s):  
Michael T. Mbizvo ◽  
Tendai M. Chiware

Male reproductive function entails complex processes, involving coordinated interactions between molecular structures within the gonadal and hormonal pathways, tightly regulated by the hypothalamic–pituitary gonadal axis. Studies in men and animal models continue to unravel these processes from embryonic urogenital development to gonadal and urogenital ducts function. The hypothalamic decapeptide gonadotropin-releasing hormone is released into the hypophyseal portal circulation in a pulsatile fashion. It acts on the gonadotropes to produce the gonadotropins, the main trophic hormones acting on the testis to regulate sperm production. This endocrine control is complemented by paracrine and autocrine regulation arising from the testis, where germ cells originate, modulated by growth factors and local regulators arising within the testis. The process of spermatogenesis, originating in seminiferous tubules, is characterized by stem cell proliferation and differentiation, meiotic divisions, expression of transcriptional regulators, through to morphological changes which include cytoplasm reorganization and flagellum development. Metabolic processes and signal transduction pathways facilitate the functional motion and transport of sperm to the site of fertilization. The normal sperm structure or morphology acquired during spermatogenesis, epididymal maturation, sperm capacitation including motility, and subsequent acrosome reaction are all critical events in the acquisition of sperm fertilizing ability. Generation of the male gamete is assured through adequate gonadal function, involving complex differentiation processes and regulation, during spermiogenesis and spermatogenesis. Sperm functional changes are acquired during epididymal transit, and functional motion is maintained in the female reproductive tract, involving activation of signaling processes and transduction pathways. Infertility can arise in the male, from spermatogenic failure, sperm functional quality, obstruction and other factors, but causes remain unknown in a large proportion of affected men. Semen analysis, complemented by the clinical picture, remains the mainstay of male infertility investigation. Assisted reproductive technology has proved useful in instances where the cause is not treatable. Complications from sexually transmitted infections could lead to male infertility, by impairing sperm quality, production, or transport through the reproductive tract. Male fecundity denotes the biological capacity of men to reproduce, based on ability to ejaculate normal sperm. Lifestyle, environmental, and endocrine disruptors have been implicated in reduced male fecundity. Interactions between vascular, neurological, hormonal, and psychological factors confer normal sexual function in men. Nocturnal erections begin in early puberty, occurring with REM sleep. Sexual health is an integral part of sexual and reproductive health, while sexual dysfunction, in various forms, is also experienced by some men. Methods of contraception available to men are few, and underused. They include condoms and vasectomy. Enhanced knowledge of male reproductive function and underlying physiological mechanisms, including sperm transit to fertilization, can be catalytic in improvements in assisted reproductive technologies, male infertility diagnosis and treatment, and development of contraceptives for men. The article reviews the processes associated with male reproductive function, dysfunction, physiological processes and infertility, fecundity, approaches to male contraception, and sexual health. It further alludes to knowledge gaps, with a view to spur further research impetus towards advancing sexual and reproductive health in the human male.


2016 ◽  
Vol 88 (11) ◽  
pp. 168-171
Author(s):  
S I Kayukova

The paper outlines a concise review of Russian and foreign literature on the specific features of the course of respiratory tuberculosis in reproductive-aged women. It shows the impact of active tuberculosis and massive chemotherapy on the reproductive system, analyzes clinical symptoms, immediate and long-term consequences, and prognosis of future reproductive function. The timely diagnosis and optimal correction of reproductive disorders in women with respiratory tuberculosis can improve their quality of life, fertile capacities, and birth of a successive healthy offspring


2021 ◽  
Author(s):  
Benhong GU ◽  
Shangren WANG ◽  
Feng LIU ◽  
Yuxuan SONG ◽  
Jun LI ◽  
...  

Abstract Male infertility may be caused by genetic and/or environmental factors that impair spermatogenesis and sperm maturation. High-altitude (HA) hypoxic environments represent one of the most serious challenges faced by humans that reside in these areas. To assess the influence of the plateau environment on semen parameters, 2,798 males, including 1,111 native Tibetans and 1,687 Han Chinese individuals living in the plains(HCILP) who underwent pre-pregnancy checkups, were enrolled in this study. The semen samples of males were evaluated to determine conventional sperm parameters, sperm morphology, and sperm movement. Reproductive endocrine hormones (REHs) were detected in 474 males, including 221 Tibetans and 253 HCILP. Due to recurrent abortions in partners, the DNA fragmentation index (DFI) of 133 native Tibetans and 393 HCILP individuals was further compared. Luteinizing hormone (LH) (4.94 ± 2.12 vs. 3.29 ± 1.43 U/L), prolactin (11.34 ± 3.87 vs. 8.97 ± 3.48 nmol/L), E2/T (0.22 ± 0.11 vs 0.11 ± 0.05), median total sperm motility (61.20% vs. 51.56%), and DFI (23.11% vs. 7.22%) were higher in males from plateau areas while median progressive motility (PR) (35.60% vs. 41.12%), total number of PR sperms (51.61 vs. 59.63 mil/ejaculate), percentage of normal form sperms (3.70% vs. 6.00%), curvilinear velocity (36.10 vs. 48.97 μm/s), straight-line (rectilinear) velocity (14.70 vs. 31.52 μm/s), estradiol (103.82 ± 45.92 vs. 146.01 ± 39.73 pmol/L), progesterone (0.29 ± 0.27 vs. 2.22 ± 0.84 nmol/L), testosterone (4.90 ± 1.96 vs. 14.36 ± 5.24 nmol/L), and testosterone secretion index (ratio of testosterone to LH) (33.45 ± 22.86 vs 145.78 ± 73.41) were lower than those in males from the plains. There was no difference in median total sperm number (157.76 vs. 151.65 mil/mL), sperm concentration (52.40 vs. 51.79 mil/mL), volume (3.10 vs. 3.10 mL), total normal form sperms (5.91 vs. 6.58 mil/ejaculate, p50), and follicle-stimulating hormone (FSH) levels (4.13 ± 2.55 U/L vs 3.82 ± 2.35 U/L) between the two groups of males. The REH and sperm parameters of males from HA hypoxic environments were adaptively altered. Although the total number of PR sperm decreased and DFI increased, the Tibetan population that lives at HAs has been found to grown continuously and rapidly. These results supplement prior findings regarding the impact of HA on male reproductive function.


2019 ◽  
Vol 26 (22) ◽  
pp. 4191-4222 ◽  
Author(s):  
R.S. Tavares ◽  
S. Escada-Rebelo ◽  
M.I. Sousa ◽  
A. Silva ◽  
J. Ramalho-Santos ◽  
...  

The alarming increase in the number of diabetic patients worldwide raises concerns regarding the impact of the disease on global health, not to mention on social and economic aspects. Furthermore, the association of this complex metabolic disorder with male reproductive impairment is worrying, mainly due to the increasing chances that young individuals, at the apex of their reproductive window, could be affected by the disease, further contributing to the disturbing decline in male fertility worldwide. The cornerstone of diabetes management is glycemic control, proven to be effective in avoiding, minimizing or preventing the appearance or development of disease-related complications. Nonetheless, the possible impact of these therapeutic interventions on male reproductive function is essentially unexplored. To address this issue, we have made a critical assessment of the literature on the effects of several antidiabetic drugs on male reproductive function. While the crucial role of insulin is clear, as shown by the recovery of reproductive impairments in insulin-deficient individuals after treatment, the same clearly does not apply to other antidiabetic strategies. In fact, there is an abundance of controversial reports, possibly related to the various study designs, experimental models and compounds used, which include biguanides, sulfonylureas, meglitinides, thiazolidinediones/glitazones, bile acid sequestrants, amylin mimetics, as well as sodiumglucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide 1 (GLP1), α-glucosidase inhibitors and dipeptidyl peptidase 4 (DPP4) inhibitors. These aspects constitute the focus of the current review.


Reproduction ◽  
2021 ◽  
Author(s):  
Andreia Filipa Silva ◽  
João Ramalho-Santos ◽  
Sandra Amaral

Immune infertility occurs due to the presence of antisperm antibodies (ASA). This type of infertility has a relatively low prevalence (2.6-6.6% in infertile men), and its etiology, risk factors, targets and consequences for male fertility are not completely understood. While it is largely accepted that abnormalities in the blood-testis barrier and/or blood-epididymal barrier are the main factors behind its etiology, and that sperm motility is the most frequently reported altered parameter, few are the well-defined risk factors and ASA targets only now started to be disclosed, with proteins involved in sperm-oocyte interaction rising as the most significant. The development of potential treatments is also limited, being the corticosteroids the more promising. Overall, there are still many knowledge gaps related to immune infertility. With this review we aimed to gather all the information collected from studies developed in humans in the last decade. Despite the controversial results/inconsistencies, that are not only a result from the complexity of mechanisms/variables involved in ASA infertility, but also from the technical approaches to assess ASA and the lack of a consensus regarding the thresholds to be used, this manuscript aims to bring a fresh update on the field. It has become clear that, to obtain more/reliable data, there is a need to assess ASA in all the routine seminal analysis, following WHO recommendations. In this way it will be possible to obtain consistent and comparable information, that can add to current knowledge. Additionally, multicentric studies with large cohorts are also missing, and future research should take this into consideration.


2018 ◽  
Vol 475 (22) ◽  
pp. 3535-3560 ◽  
Author(s):  
Bruno P. Moreira ◽  
Mariana P. Monteiro ◽  
Mário Sousa ◽  
Pedro F. Oliveira ◽  
Marco G. Alves

Obesity stands as one of the greatest healthcare challenges of the 21st century. Obesity in reproductive-age men is ever more frequent and is reaching upsetting levels. At the same time, fertility has taken an inverse direction and is decreasing, leading to an increased demand for fertility treatments. In half of infertile couples, there is a male factor alone or combined with a female factor. Furthermore, male fertility parameters such as sperm count and concentration went on a downward spiral during the last few decades and are now approaching the minimum levels established to achieve successful fertilization. Hence, the hypothesis that obesity and deleterious effects in male reproductive health, as reflected in deterioration of sperm parameters, are somehow related is tempting. Most often, overweight and obese individuals present leptin levels directly proportional to the increased fat mass. Leptin, besides the well-described central hypothalamic effects, also acts in several peripheral organs, including the testes, thus highlighting a possible regulatory role in male reproductive function. In the last years, research focusing on leptin effects in male reproductive function has unveiled additional roles and molecular mechanisms of action for this hormone at the testicular level. Herein, we summarize the novel molecular signals linking metabolism and male reproductive function with a focus on leptin signaling, mitochondria and relevant pathways for the nutritional support of spermatogenesis.


2019 ◽  
Vol 8 (5) ◽  
pp. 585 ◽  
Author(s):  
Rosita A. Condorelli ◽  
Aldo E. Calogero ◽  
Rossella Cannarella ◽  
Filippo Giacone ◽  
Laura M. Mongioi’ ◽  
...  

Introduction. In recent years, research has focused on the impact that diabetes mellitus (DM) has on male reproductive function. The available evidence has mainly considered type 2 DM (DM2). However, we have previously shown that type 1 DM (DM1) also affects male reproductive health. Given the efficacy of carnitine in the treatment of male infertility, a topic that merits further investigation is its role in the treatment of infertile patients with DM1. Aim. To investigate the efficacy of carnitines for the treatment of asthenozoospermia in DM1 patients. Methods. This was a two-arm single-blind, randomized control trial. The patients enrolled in this study were assigned to the group receiving L-acetylcarnitine (LAC) (1.5 g daily for 4 months) or to the group receiving LAC (same dosage) plus L-carnitine (LC) (2 g daily for 4 months). Serum-glycated hemoglobin levels did not differ significantly after either of the two treatments given. Administration of LAC plus LC showed greater efficacy on progressive sperm motility than single therapy (increase 14% vs. 1% after treatment, respectively). Discussion. The results of this study showed that the administration of LAC plus LC is more effective than the administration of LAC alone. The lower efficacy of LAC alone could be due to the lower overall administered dosage. Alternatively, a selective defect of carnitine transporters at an epididymal level could be hypothesized in patients with DM1. Further studies are needed to clarify this point.


Sign in / Sign up

Export Citation Format

Share Document