scholarly journals Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response

2009 ◽  
Vol 3 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Beth A. VanWinkle ◽  
Karen L. De Mesy Bentley ◽  
Jonathan M. Malecki ◽  
Karlene K. Gunter ◽  
Irene M. Evans ◽  
...  
2009 ◽  
pp. 1-12
Author(s):  
Beth VanWinkle ◽  
Karen de Mesy Bentley ◽  
Jonathan Malecki ◽  
Karlene Gunter ◽  
Irene Evans ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242789
Author(s):  
Yoko Ito ◽  
Kana Oshinden ◽  
Naokata Kutsuzawa ◽  
Chinatsu Kohno ◽  
Sanae Isaki ◽  
...  

There has been an increase in the usage of heat-not-burn (HNB) cigarette products. However, their effects on alveolar epithelial cells (AECs) remain unknown. AECs are the target cells of conventional cigarette smoking-related respiratory diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and lung cancer whose pathogenesis involves oxidative stress. In this study, primary rat AECs were isolated, cultured and stimulated by HNB cigarette smoke extract (CSE). Our data indicate that rat AECs exposed to HNB CSE induced oxidative stress response genes (e.g. Hmox-1, Gsta1, Gsta3 and Nqo1). We also compared the oxidative stress response between two different types of AECs, alveolar type I-like (ATI-like) cells and type II (ATII) cells, and between two different types of cigarette, HNB cigarettes and conventional cigarettes. The expressions of Gsta1, Gsta3 and Nqo1 were higher in ATII cells than ATI-like cells in response to HNB and conventional cigarettes, but there was no significant difference in their expression levels between HNB cigarette and conventional cigarette. Taken together, our results suggest that HNB cigarettes have the similar potential as conventional cigarette products to induce oxidative stress response in AECs.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 25 (4) ◽  
pp. 297-303 ◽  
Author(s):  
W. Chen ◽  
M. R. Alley ◽  
B. W. Manktelow ◽  
D. Hopcroft ◽  
R. Bennett

Eight colostrum-deprived lambs were inoculated intratracheally with ovine isolates of Bordetella parapertussis. Fluids obtained by bronchoalveolar lavage had a large increase in total cell counts 24 hours after inoculation; up to 93% of cells were neutrophils. From 3 days after inoculation, the number of alveolar macrophages in lavage samples was markedly increased. From 5 days onwards, many alveolar macrophages had moderate to severe cytoplasmic vacuolation. Topographically, tracheal and bronchial epithelium was covered by a large amount of inflammatory exudate 24 hours after inoculation. Later, the tracheobronchial epithelium showed focal extrusions from ciliated cells, which were occasionally associated with B. parapertussis organisms. Ultrastructurally, cytopathological changes associated with B. parapertussis infection were mild focal degeneration of airway epithelium with slight loss of cilia, moderate to severe degeneration of type I and type II alveolar epithelial cells, and focal inflammation in the lungs. These results suggest that the primary targets of B. parapertussis infection are alveolar macrophages and the epithelial cells of bronchioles and alveoli.


2000 ◽  
Vol 88 (5) ◽  
pp. 1890-1896 ◽  
Author(s):  
Christine Clerici ◽  
Michael A. Matthay

Alveolar hypoxia occurs during ascent to high altitude but is also commonly observed in many acute and chronic pulmonary disorders. The alveolar epithelium is directly exposed to decreases in O2tension, but a few studies have evaluated the effects of hypoxia on alveolar cell function. The alveolar epithelium consists of two cell types: large, flat, squamous alveolar type I and cuboidal type II (ATII). ATII cells are more numerous and have a number of critical functions, including transporting ions and substrates required for many physiological processes. ATII cells express 1) membrane proteins used for supplying substrates required for cell metabolism and 2) ion transport proteins such as Na+channels and Na+-K+-ATPase, which are involved in the vectorial transport of Na+from the alveolar to interstitial spaces and therefore drive the resorption of alveolar fluid. This brief review focuses on gene expression regulation of glucose transporters and Na+transport proteins by hypoxia in alveolar epithelial cells. Cells exposed to severe hypoxia (0% or 3% O2) for 24 h upregulate the activity and expression of the glucose transporter GLUT-1, resulting in preservation of ATP content. Hypoxia-induced increases in GLUT-1 mRNA levels are due to O2deprivation and inhibition of oxidative phosphorylation. This regulation occurs at the transcriptional level through activation of a hypoxia-inducible factor. In contrast, hypoxia downregulates expression and activity of Na+channels and Na+-K+-ATPase in cultured alveolar epithelial cells. Hypoxia induces time- and concentration-dependent decreases of α-, β-, and γ-subunits of epithelial Na+channel mRNA and β1- and α1-subunits of Na+-K+-ATPase, effects that are completely reversed after reoxygenation. The mechanisms by which O2deprivation regulates gene expression of Na+transport proteins are not fully elucidated but likely involve the redox status of the cell. Thus hypoxia regulates gene expression of transport proteins in cultured alveolar epithelial type II cells differently, preserving ATP content.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lu-Kai Wang ◽  
Tsai-Jung Wu ◽  
Ji-Hong Hong ◽  
Fang-Hsin Chen ◽  
John Yu ◽  
...  

The lung is a radiosensitive organ, which imposes limits on the therapeutic dose in thoracic radiotherapy. Irradiated alveolar epithelial cells promote radiation-related pneumonitis and fibrosis. However, the role of lung stem cells (LSCs) in the development of radiation-induced lung injury is still unclear. In this study, we found that both LSCs and LSC-derived type II alveolar epithelial cells (AECII) can repair radiation-induced DNA double-strand breaks, but the irradiated LSCs underwent growth arrest and cell differentiation faster than the irradiated AECII cells. Moreover, radiation drove LSCs to fibrosis as shown with the elevated levels of markers for epithelial-mesenchymal transition and myofibroblast (α-smooth muscle actin (α-SMA)) differentiation in in vitro and ex vivo studies. Increased gene expressions of connective tissue growth factor and α-SMA were found in both irradiated LSCs and alveolar cells, suggesting that radiation could induce the fibrogenic differentiation of LSCs. Irradiated LSCs showed an increase in the expression of surfactant protein C (SP-C), the AECII cell marker, and α-SMA, and irradiated AECII cells expressed SP-C and α-SMA. These results indicated that radiation induced LSCs to differentiate into myofibroblasts and AECII cells; then, AECII cells differentiated further into either myofibroblasts or type I alveolar epithelial cells (AECI). In conclusion, our results revealed that LSCs are sensitive to radiation-induced cell damage and may be involved in radiation-induced lung fibrosis.


1990 ◽  
Vol 38 (2) ◽  
pp. 233-244 ◽  
Author(s):  
D J Taatjes ◽  
L A Barcomb ◽  
K O Leslie ◽  
R B Low

We used post-embedding cytochemical techniques to investigate the lectin binding profiles of rat lung alveolar epithelial cells. Sections from rat lung embedded in the hydrophilic resin Lowicryl K4M were incubated either directly with a lectin-gold complex or with an unlabeled lectin followed by a specific glycoprotein-gold complex. The binding patterns of the five lectins used could be divided into three categories according to their reactivity with alveolar epithelial cells: (a) the Limax flavus lectin and Ricinus communis I lectin bound to both type I and type II cell plasma membranes; (b) the Helix pomatia lectin and Sambucus nigra L. lectin bound to type II but not type I cells; and (c) the Erythrina cristagalli lectin reacted with type I cells but was unreactive with type II cells. The specificity of staining was assessed by control experiments, including pre-absorption of the lectins with various oligosaccharides and enzymatic pre-treatment of sections with highly purified glycosidases to remove specific sugar residues. The results demonstrate that these lectins can be used to distinguish between type I and type II cells and would therefore be useful probes for investigating cell dynamics during lung development and remodeling.


2014 ◽  
Vol 307 (11) ◽  
pp. L895-L907 ◽  
Author(s):  
Korbinian Ballweg ◽  
Kathrin Mutze ◽  
Melanie Königshoff ◽  
Oliver Eickelberg ◽  
Silke Meiners

Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics. Whereas mild stress induces a prosurvival response termed stress-induced mitochondrial hyperfusion, severe stress results in mitochondrial fragmentation and mitophagy. In the present study, we analyzed the mitochondrial response to mild and nontoxic doses of cigarette smoke extract (CSE) in alveolar epithelial cells. We characterized mitochondrial morphology, expression of mitochondrial fusion and fission genes, markers of mitochondrial proteostasis, as well as mitochondrial functions such as membrane potential and oxygen consumption. Murine lung epithelial (MLE)12 and primary mouse alveolar epithelial cells revealed pronounced mitochondrial hyperfusion upon treatment with CSE, accompanied by increased expression of the mitochondrial fusion protein mitofusin 2 and increased metabolic activity. We did not observe any alterations in mitochondrial proteostasis, i.e., induction of the mitochondrial unfolded protein response or mitophagy. Therefore, our data indicate an adaptive prosurvival response of mitochondria of alveolar epithelial cells to nontoxic concentrations of CSE. A hyperfused mitochondrial network, however, renders the cell more vulnerable to additional stress, such as sustained cigarette smoke exposure. As such, cigarette smoke-induced mitochondrial hyperfusion, although part of a beneficial adaptive stress response in the first place, may contribute to the pathogenesis of COPD.


Sign in / Sign up

Export Citation Format

Share Document