scholarly journals Effects of canopy midstory management and fuel moisture on wildfire behavior

2019 ◽  
Author(s):  
Tirtha Banerjee ◽  
Warren Heilman ◽  
Scott Goodrick ◽  
Kevin Hiers ◽  
Rodman Linn

Wildfires burning more and more areas in North America can partly be attributed to fire exclusion activities in the past few decades which led to higher fuel accumulation. Mechanical thinning and prescribed burns are effective techniques to manage fuel loads and to establish a higher degree of control over future fire risk as well as to restore fire prone landscapes to their natural states of succession. However, given the complexity of interactions between fine scale fuel heterogeneity and wind, it is difficult to assess the success of thinning operations and prescribed burns. The present work addresses this issue systematically by simulating a fire starting from a simple fire line and moving through a vegetative environment where the midstory has been cleared in different degrees, leading to a canopy with almost no midstory, another with a sparse midstory and another with a thick midstory. The simulations are conducted for these three canopies under two different conditions, where the fuel moisture is high and where it is low. These six sets of simulations show widely different fire behavior, in terms of fire intensity, spread rate and consumption. To understand the physical mechanisms that lead to these differences, detailed analyses are conducted to look at wind patterns, mean flow and turbulent fluxes of momentum and energy. The analyses also lead to improved understanding of processes leading to high intensity crowning behavior in presence of a dense midstory. Moreover, this work highlights the importance of considering fine scale fuel heterogeneity, seasonality, wind effects and the associated fire-canopy-atmosphere interactions while considering prescribed burns and forest management operations.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tirtha Banerjee ◽  
Warren Heilman ◽  
Scott Goodrick ◽  
J. Kevin Hiers ◽  
Rod Linn

Abstract Increasing trends in wildfire severity can partly be attributed to fire exclusion in the past century which led to higher fuel accumulation. Mechanical thinning and prescribed burns are effective techniques to manage fuel loads and to establish a higher degree of control over future fire risk, while restoring fire prone landscapes to their natural states of succession. However, given the complexity of interactions between fine scale fuel heterogeneity and wind, it is difficult to assess the success of thinning operations and prescribed burns. The present work addresses this issue systematically by simulating a simple fire line and propagating through a vegetative environment where the midstory has been cleared in different degrees, leading to a canopy with almost no midstory, another with a sparse midstory and another with a dense midstory. The simulations are conducted for these three canopies under two different conditions, where the fuel moisture is high and where it is low. These six sets of simulations show widely different fire behavior, in terms of fire intensity, spread rate and consumption. To understand the physical mechanisms that lead to these differences, detailed analyses are conducted to look at wind patterns, mean flow and turbulent fluxes of momentum and energy. The analyses also lead to improved understanding of processes leading to high intensity crowning behavior in presence of a dense midstory. Moreover, this work highlights the importance of considering fine scale fuel heterogeneity, seasonality, wind effects and the associated fire-canopy-atmosphere interactions while considering prescribed burns and forest management operations.


FLORESTA ◽  
2013 ◽  
Vol 43 (4) ◽  
pp. 557
Author(s):  
Celso Darci Seger ◽  
Antonio Carlos Batista ◽  
Alexandre França Tetto ◽  
Ronaldo Viana Soares

As queimas controladas constituem práticas de manejo utilizadas em diferentes tipos de vegetação e difundidas em vários países. No entanto, para a realização de tais práticas com segurança e eficiência é fundamental o conhecimento do comportamento do fogo. O objetivo desse trabalho foi caracterizar o comportamento do fogo em queimas controladas de vegetação Estepe Gramíneo-Lenhosa no estado do Paraná. Para isso, foi instalado um experimento no município de Palmeira, onde 20 parcelas foram queimadas, sendo metade a favor e metade contra o vento. A carga de material combustível fino estimada foi de 2,26 kg.m-2, com teor médio de umidade de 50,45%. A quantidade de material consumido pela queima foi de 1,76 kg.m-2, com uma eficiência média de queima de 76,86%. As médias obtidas, a favor e contra o vento, foram respectivamente: velocidade de propagação do fogo de 0,049 e 0,012 m.s-1, altura das chamas de 1,34 e 0,843 m, intensidade do fogo de 210,53 e 50,68 kcal.m-1.s-1 e calor liberado de 4.067,19 e 4.508,92 kcal.m-2. Os resultados permitiram concluir que as queimas controladas em vegetação de campos naturais, realizadas dentro dos critérios estabelecidos de planos de queima, são viáveis e seguras sob o ponto de vista de perigo de incêndios.Palavras chave: Queima prescrita; material combustível; intensidade do fogo; perigo de incêndios. AbstractFire behavior of prescribed burns in grassland on Palmeira county, Paraná, Brazil. The prescribed burns are practices of management used in different types of vegetation and widespread in several countries. However, to carry out such practices safely and effectively is fundamental knowledge of fire behavior. The aim of this study was to characterize the fire behavior in controlled burning of grassland vegetation in Paraná state. For this, an experiment was conducted in Palmeira County, where 20 plots were burned, half in favor and half against the wind. The estimated fine fuel loading was 2.26 kg.m-2, with average moisture content of 50.45%. The fuel consumption by burning was 1.76 kg.m-2 with an average efficiency of burning of 76.86%. The averages, for and against the wind, were: speed of fire spread of 0.049 and 0.012 m.s-1, the flame height of 1.34 m and 0.843, fire intensity of 210.53 and 50.68 kcal.m-1.s-1 and heat released from 4,067.19 and 4,508.92 kcal.m-2. The results show that the controlled burnings of grasslands vegetation, carried out within the established criteria burning plans are feasible and safe from the aspect of fire danger.Keywords: Prescribed burns; fuel loading; fire intensity; fire risk.


2009 ◽  
Vol 18 (3) ◽  
pp. 315 ◽  
Author(s):  
J. Kevin Hiers ◽  
Joseph J. O'Brien ◽  
R. J. Mitchell ◽  
John M. Grego ◽  
E. Louise Loudermilk

In ecosystems with frequent surface fire regimes, fire and fuel heterogeneity has been largely overlooked owing to the lack of unburned patches and the difficulty in measuring fire behavior at fine scales (0.1–10 m). The diverse vegetation in these ecosystems varies at these fine scales. This diversity could be driven by the influences of local interactions among patches of understorey vegetation and canopy-supplied fine fuels on fire behavior, yet no method we know of can capture fine-scale fuel and fire measurements such that these relationships could be rigorously tested. We present here an original method for inventorying of fine-scale fuels and in situ measures of fire intensity within longleaf pine forests of the south-eastern USA. Using ground-based LIDAR (Light Detection and Ranging) with traditional fuel inventory approaches, we characterized within-fuel bed variation into discrete patches, termed wildland fuel cells, which had distinct fuel composition, characteristics, and architecture that became spatially independent beyond 0.5 m2. Spatially explicit fire behavior was measured in situ through digital infrared thermography. We found that fire temperatures and residence times varied at similar scales to those observed for wildland fuel cells. The wildland fuels cell concept could seamlessly connect empirical studies with numerical models or cellular automata models of fire behavior, representing a promising means to better predict within-burn heterogeneity and fire effects.


Fire ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 60 ◽  
Author(s):  
Jonathan Reimer ◽  
Dan K. Thompson ◽  
Nicholas Povak

Most wildfires in North America are quickly extinguished during initial attack (IA), the first phase of suppression. While rates of success are high, it is not clear how much IA suppression reduces annual fire risk across landscapes. This study introduces a method of estimating IA effectiveness by pairing burn probability (BP) analysis with containment probability calculations based on initial fire intensity, spread rate, and crew response time. The method was demonstrated on a study area in Kootenay National Park, Canada by comparing burn probabilities with and without modeled IA suppression. Results produced landscape-level analyses of three variables: burn probability, suppression effectiveness, and conditional escape probability. Overall, IA reduced mean study area BP by 78% as compared to a no-suppression scenario, but the primary finding was marked spatial heterogeneity. IA was most effective in recently burned areas (86% reduction), whereas mature, contiguous fuels moderated its influence (50%). Suppression was least effective in the designated wildfire exclusion zone, suggesting supplementary management approaches may be appropriate. While the framework includes assumptions about IA containment, results offer new insight into emergent risk patterns and how management strategies alter them. Managers can adopt these methods to anticipate, quantify, and compare fine-scale policy outcomes.


2018 ◽  
Vol 48 (11) ◽  
pp. 1331-1342 ◽  
Author(s):  
Jesse K. Kreye ◽  
J. Kevin Hiers ◽  
J. Morgan Varner ◽  
Ben Hornsby ◽  
Saunders Drukker ◽  
...  

Much of fire behavior is driven by fine-scale patterns of fuel moisture; however, moisture predictions typically occur over large scales. The source of fine-scale variation in moisture results from a combination of fuelbed properties and overstory forest structure that influences water movement and distribution of solar radiation. Fine-scale moisture variation is of particular relevance in humid forests managed with frequent prescribed fire where fire behavior variation is tightly linked to differential fire effects. Results of a three-tiered experiment combining laboratory and field methods demonstrated that solar radiation exerted a strong influence on fuel moisture patterns in a temperate humid pine forest. Infrared radiation more rapidly dried Quercus and Pinus litter in laboratory experiments compared with controls. Litter exposed to sunlight during small-scale outdoor experiments was significantly drier than shaded litter. Quercus litter was wetter than Pinus on mornings, but dried more rapidly, becoming drier than Pinus litter by mid-day when exposed to sunlight. Field observations validated small-scale outdoor and laboratory results but also revealed the influence of fuel position: elevated litter was wetter than ground-level litter at peak burning time. Results provide insight into how overstory structure and composition may influence fine-scale heterogeneity of surface moisture dynamics and fire behavior.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 918 ◽  
Author(s):  
Tirtha Banerjee

Key message: We have explored the impacts of forest thinning on wildland fire behavior using a process based model. Simulating different degrees of thinning, we found out that forest thinning should be conducted cautiously as there could be a wide range of outcomes depending upon the post-thinning states of fuel availability, fuel connectivity, fuel moisture and micrometeorological features such as wind speed. Context: There are conflicting reports in the literature regarding the effectiveness of forest thinning. Some studies have found that thinning reduces fire severity, while some studies have found that thinning might lead to enhanced fire severity. Aims: Our goal was to evaluate if both of these outcomes are possible post thinning operations and what are the limiting conditions for post thinning fire behavior. Methods: We used a process based model to simulate different degrees of thinning systematically, under two different conditions, where the canopy fuel moisture was unchanged and when the canopy fuel moisture was also depleted post thinning. Both of these scenarios are reported in the literature. Results: We found out that a low degree of thinning can indeed increase fire intensity, especially if the canopy fuel moisture is low. A high degree of thinning was effective in reducing fire intensity. However, thinning also increased rate of spread under some conditions. Interestingly, both intensity and rate of spread were dependent on the competing effects of increased wind speed, fuel loading and canopy fuel moisture. Conclusion: We were able to find the limits of fire behavior post thinning and actual fire behavior is likely to be somewhere in the middle of the theoretical extremes explored in this work. The actual fire behavior post thinning should depend on the site specific conditions which would determine the outcome of the interplay among the aforementioned conditions. The work also highlights that policymakers should be careful about fine scale canopy architectural attributes and micrometeorological aspects when planning fuel treatment operations.


2015 ◽  
Vol 45 (1) ◽  
pp. 68-77 ◽  
Author(s):  
T.J. Schiks ◽  
B.M. Wotton

Mechanical mastication is increasingly used as a fuel management treatment to reduce fire risk at the wildland–urban interface, although ignition and fire behaviour in these novel fuel beds are poorly understood. We investigated the influence of observed fuel moisture content, wind speed, and firebrand size on the probability of sustained flaming of masticated fuel beds under both laboratory and field settings. Logistic regression techniques were applied to assess the probability of sustained flaming in both datasets. Models for the field were also developed using estimated moisture from three sets of weather-based models: (i) the hourly Fine Fuel Moisture Code (FFMC) from the Canadian Forest Fire Weather Index System, (ii) the National Fire Danger Rating System (NFDRS) moisture estimates for 1 h and 10 h fuels, and (iii) a masticated surface fuel moisture model (MAST). In both laboratory and field testing, the likelihood of a successful ignition increased with decreasing moisture content and increasing wind speed; the effect of firebrand size was only apparent in laboratory testing. The FFMC, NFDRS, and MAST predictions had somewhat reduced discriminative power relative to direct moisture in predicting the probability of sustained flaming based on our field observations. Our results speak to the disparity between the fire behaviour modeling that occurs in the laboratory and the fire behavior modeling that occurs in the field, as the methodology permitted comparison of predictions from sustained flaming models that were developed for one experimental setting and applied to the other.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Valerie S. Densmore ◽  
Emma S. Clingan

Abstract Background Prescribed burning is used to reduce fire hazard in highly flammable vegetation types, including Banksia L.f. woodland that occurs on the Swan Coastal Plain (SCP), Western Australia, Australia. The 2016 census recorded well over 1.9 million people living on the SCP, which also encompasses Perth, the fourth largest city in Australia. Banksia woodland is prone to frequent ignitions that can cause extensive bushfires that consume canopy-stored banksia seeds, a critical food resource for an endangered bird, the Carnaby’s cockatoo (Calyptorynchus latirostris, Carnaby 1948). The time needed for banksias to reach maturity and maximum seed production is several years longer than the typical interval between prescribed burns. We compared prescribed burns to bushfires and unburned sites at three locations in banksia woodland to determine whether low-intensity prescribed burns affect the number of adult banksias and their seed production. Study sites were matched to the same vegetation complex, fire regime, and time-since-fire to isolate fire intensity as a variable. Results Headfire rates of spread and differenced normalized burn ratios indicated that prescribed burning was generally of a much lower intensity than bushfire. The percentage survival of adult banksias and their production of cones and follicles (seeds) did not decrease during the first three years following a prescribed burn. However, survival and seed production were significantly diminished followed high-intensity bushfire. Thus, carrying capacity for Carnaby’s cockatoo was unchanged by prescribed burning but decreased markedly following bushfire in banksia woodland. Conclusions These results suggest that prescribed burning is markedly different from bushfire when considering appropriate fire intervals to conserve canopy habitats in fire-resilient vegetation communities. Therefore, low-intensity prescribed burning represents a viable management tool to reduce the frequency and extent of bushfire impacts on banksia woodland and Carnaby’s cockatoo.


Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Casey Teske ◽  
Melanie K. Vanderhoof ◽  
Todd J. Hawbaker ◽  
Joe Noble ◽  
John Kevin Hiers

Development of comprehensive spatially explicit fire occurrence data remains one of the most critical needs for fire managers globally, and especially for conservation across the southeastern United States. Not only are many endangered species and ecosystems in that region reliant on frequent fire, but fire risk analysis, prescribed fire planning, and fire behavior modeling are sensitive to fire history due to the long growing season and high vegetation productivity. Spatial data that map burned areas over time provide critical information for evaluating management successes. However, existing fire data have undocumented shortcomings that limit their use when detailing the effectiveness of fire management at state and regional scales. Here, we assessed information in existing fire datasets for Florida and the Landsat Burned Area products based on input from the fire management community. We considered the potential of different datasets to track the spatial extents of fires and derive fire history metrics (e.g., time since last burn, fire frequency, and seasonality). We found that burned areas generated by applying a 90% threshold to the Landsat burn probability product matched patterns recorded and observed by fire managers at three pilot areas. We then created fire history metrics for the entire state from the modified Landsat Burned Area product. Finally, to show their potential application for conservation management, we compared fire history metrics across ownerships for natural pinelands, where prescribed fire is frequently applied. Implications of this effort include increased awareness around conservation and fire management planning efforts and an extension of derivative products regionally or globally.


2021 ◽  
Vol 13 (12) ◽  
pp. 2386
Author(s):  
Aqil Tariq ◽  
Hong Shu ◽  
Qingting Li ◽  
Orhan Altan ◽  
Mobushir Riaz Khan ◽  
...  

Prescribed burning is a common strategy for minimizing forest fire risk. Fire is introduced under specific environmental conditions, with explicit duration, intensity, and rate of spread. Such conditions deviate from those encountered during the fire season. Prescribed burns mostly affect surface fuels and understory vegetation, an outcome markedly different when compared to wildfires. Data on prescribed burning are crucial for evaluating whether land management targets have been reached. This research developed a methodology to quantify the effects of prescribed burns using multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery in the forests of southeastern Australia. C-band SAR datasets were specifically used to statistically explore changes in radar backscatter coefficients with the intensity of prescribed burns. Two modeling approaches based on pre- and post-fire ratios were applied for evaluating prescribed burn impacts. The effects of prescribed burns were documented with an overall accuracy of 82.3% using cross-polarized backscatter (VH) SAR data under dry conditions. The VV polarization indicated some potential to detect burned areas under wet conditions. The findings in this study indicate that the C-band SAR backscatter coefficient has the potential to evaluate the effectiveness of prescribed burns due to its sensitivity to changes in vegetation structure.


Sign in / Sign up

Export Citation Format

Share Document