Research on cell sources for brain cell replacement methods has gained major importance. Cell and gene therapy are potentially intriguing new domains of regenerative medicine

2021 ◽  
Author(s):  
Moataz Dowaidar

Great advances in neurodegenerative disease, cell and gene therapy have been made in recent decades. Following the recent advancement of stem cell-based neuronal therapies, including managing their differentiation potential, research on cell sources for brain cell replacement methods has gained major importance. The objective is to obtain a certain neuronal cell fate to repair and restore the injured cell function. Several cell-based therapeutic techniques that show promise in animal HD models have failed to attain a similar degree of success in human patients. Despite its poor prospects, fetal transplantation has opened the door to a potentially intriguing new domain of regenerative medicine. However, many obstacles need to be overcome before pre-differentiated stem cells can be used in clinical trials, and, in particular, ensuring that the source of stem cells has optimal differentiation potential with full integration and functional enhancement, has measurable clinical benefits with minimal impact on the host immune system, and is tumor-free. New cell, molecular, and pharmacological approaches may assist enhance neuronal survival of transplanted cells, and consequently therapy for many fatal brain diseases. Molecular approaches, on the other hand, have looked into the idea of entirely eliminating HTT utilizing RNAi in the hopes of preventing the mutant protein that produced it in the first place. In contrast, HTT's physiological significance requires the application of procedures that specifically interfere with MHTHTT. The CRISPR/Cas9 approach gives researchers the ability to inactivate the mHTT allele by deleting or editing particular regions, leading to increased knowledge of how to prevent mutation-induced toxicity. Overall, despite their appealing ability to reverse mHTT-induced toxicity, these therapies may face difficulties due to the need to modify their design for individuals in order to ensure therapeutic safety.As clinical investigations are planned, genome editing already shows promise as a potent treatment to overcome clinical HD features. While there is no certainty that HD symptomatology can be fully eased, researchers must continue to hunt for ways to diminish it because it has such profound and life-threatening effects on patients and their families. These new treatments are supposed to bring a brighter future for HD sufferers.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


2021 ◽  
Vol 66 (Special Issue) ◽  
pp. 62-63
Author(s):  
Dide de Jongh ◽  
◽  
Eline Bunnik ◽  
Emma Massey ◽  
◽  
...  

"The most effective treatment for type 1 diabetes is transplantation of either a whole pancreas from a deceased donor or islet cells derived from multiple deceased donors. However, transplantation has several limitations, including shortage of post-mortem donors and the need for post-transplant patients to use life-long immunosuppressive medication. In the last decade, the field of regenerative medicine has combined engineering and biological technologies in the attempt to regenerate organs. The European VANGUARD project aims to develop immune-protected bioartificial pancreases for transplantation into non-immunosuppressed type 1 diabetic patients. This project is creating a ‘combination product’ using cells and tissue from a variety of sources, including placentas and deceased donors. The clinical development of this complex product raises ethical questions for first-in-human (FIH) clinical trials. Under what conditions can bio-artificial organs safely are transplanted in humans for the first time? How can patients be selected, recruited and informed responsibly? In this presentation, we investigate the ethical conditions for clinical trials of bio-engineered organs, focusing inter alia on study design, subject selection, risk-benefit assessment, and informed consent. We present the results of a review of the literature on the ethics of clinical trials in regenerative medicine, cell and gene therapy and transplantation, and specify existing ethical guidance in the context of FIH transplantation trials of bioartificial organs. We conclude that this new and innovative area at the intersection of regenerative medicine, cell and gene therapy and transplantation requires adequate consideration of the ethical issues in order to guide responsible research and clinical implementation. "


2020 ◽  
Vol 28 (1) ◽  
pp. 283-302
Author(s):  
Dandan Zhang ◽  
Ni Ni ◽  
Yuyao Wang ◽  
Zhimin Tang ◽  
Huiqin Gao ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.


2018 ◽  
Vol 18 (3) ◽  
pp. 264 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Pablo R. Montero-Olvera

First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources—including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues—have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.Keywords: Mesenchymal Stem Cells; Adult Stem Cells; Regenerative Medicine; Cell Differentiation; Tissue Engineering.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 914 ◽  
Author(s):  
Giancotti ◽  
Monti ◽  
Nevi ◽  
Brunelli ◽  
Pajno ◽  
...  

During foetal life, the liver plays the important roles of connection and transient hematopoietic function. Foetal liver cells develop in an environment called a hematopoietic stem cell niche composed of several cell types, where stem cells can proliferate and give rise to mature blood cells. Embryologically, at about the third week of gestation, the liver appears, and it grows rapidly from the fifth to 10th week under WNT/β-Catenin signaling pathway stimulation, which induces hepatic progenitor cells proliferation and differentiation into hepatocytes. Development of new strategies and identification of new cell sources should represent the main aim in liver regenerative medicine and cell therapy. Cells isolated from organs with endodermal origin, like the liver, bile ducts, and pancreas, could be preferable cell sources. Furthermore, stem cells isolated from these organs could be more susceptible to differentiate into mature liver cells after transplantation with respect to stem cells isolated from organs or tissues with a different embryological origin. The foetal liver possesses unique features given the co-existence of cells having endodermal and mesenchymal origin, and it could be highly available source candidate for regenerative medicine in both the liver and pancreas. Taking into account these advantages, the foetal liver can be the highest potential and available cell source for cell therapy regarding liver diseases and diabetes.


2008 ◽  
Vol 30 (3) ◽  
pp. 121-127 ◽  
Author(s):  
Keiya Ozawa ◽  
Kazuya Sato ◽  
Iekuni Oh ◽  
Katsutoshi Ozaki ◽  
Ryosuke Uchibori ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Saman Ghoraishizadeh ◽  
Afsoon Ghorishizadeh ◽  
Peyman Ghoraishizadeh ◽  
Nasibeh Daneshvar ◽  
Mohadese Hashem Boroojerdi

Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling which has a great influence on cell proliferation, differentiation, and biology. Recently, application of scaffolds and MSCs is being utilized in obtaining more homogenous population of MSCs with higher cell proliferation rate and greater differentiation potential, which are crucial factors in regenerative medicine. In this review, the definition, biology, source, characterization, and isolation of MSCs and current report of application of nanofibers in regenerative medicine in different lesions are discussed.


2022 ◽  
Author(s):  
Rohit Joshi ◽  
Pooja Murlidharan ◽  
Puspendra Yadav ◽  
Vedanshi Dharnidharka ◽  
Abhijit Majumder

Human Mesenchymal cells (hMSCs) are promising in regenerative medicine for their multi-lineage differentiation capability. It has been demonstrated that lineage specification is governed by both chemical and mechanical cues. Among all the different mechanical cues known to control hMSCs fate, substrate stiffness is the most well-studied. It has been shown that the naive mesenchymal stem cells when cultured on soft gel, they commit towards adipogenic lineage while when cultured on stiff gel they become osteogenic. Soft substrates also cause less cell spreading, less traction, less focal adhesion assembly and stress fibre formation. Furthermore, chromatin condensation increases when cells are cultured on soft substrates. As the nucleus has been postulated to be mechanosensor and mechanotransducer, in this paper we asked the question how mechanosensing and mechanoresponse process will be influenced if we change the chromatin condensation by using an external chemical stimulus. To address this question, we treated hMSCs cultured on soft polyacrylamide (PA) gels with a histone deacetylase inhibitor (HDACi) called Valproic Acid (VA) which decondense the chromatin by hyperacetylation of histone proteins. We found that the treatment with VA overrides the effect of soft substrates on hMSCs morphology, cellular traction, nuclear localization of mechnosensory protein YAP, and differentiation. VA treated cells behaved as if they are on stiff substrates in all aspects tested here. Furthermore, we have shown that VA controls hMSCs differentiation via activation of ERK/MAPK pathway by increasing the p-ERK expression which inhibits adipogenic differentiation potential of mesenchymal stem cells. Collectively, these findings for the first time demonstrate that inhibiting histone acetylation can override the mechanoresponse of hMSCs. This work will help us to fundamentally understand the mechanosignalling process and to control the hMSCs differentiation in tissue engineering and regenerative medicine.


Author(s):  
Yongchun Hou ◽  
Zi Yan ◽  
Zhongqi Wu

Bone regeneration is a critical problem in modern clinical practice. Osteocytes are the most abundant cell population of mature adult bone that plays major roles in the regulation of bone formation. In humans, the segmental bone defects cannot be repaired by endogenous regenerative mechanisms. Bone tissue engineering (BTE) is a promising option for the treatment of difficult segmental and skeletal defects. BTE requires suitable cell sources with rapid expansion and adequate function, inducible factors, and scaffolds, to successfully regenerate or repair the bone injury. To overcome the disadvantages of using allogeneic and autologous tissue grafts, stem cell-based therapy has progressed an advanced topic in regenerative medicine. In the past few decades, numerous attempts have been made to generate osteocytes by using pluripotent stem cells (PSCs) for repair and regeneration of bone defects. Human induced pluripotent stem cells (hiPSCs) are PSCs that can self-renew and differentiate into a variety of cell types. Reprogramming of human somatic cells into hiPSCs provides a new opportunity for regenerative medicine, cell-based drug discovery, disease modeling, and toxicity assessment. The ability to differentiate hiPSCs towards mesenchymal stem cells (iPSC-MSCs) is essential for treating bone-related damages and injuries. Several in vitro studies revealed that the cell type of origin for iPSCs, a combination of transcription factors, the type of promoter in the vector, transduction methods, scaffolds, differentiating techniques, and culture medium may affect the osteogenic differentiation potential of hiPSCs. This review will focus on several factors that influence the osteogenic differentiation of human iPSCs.


Sign in / Sign up

Export Citation Format

Share Document