scholarly journals Preparation of Engineered Carbon Nanorods from Garbage Leachate by Pyrolysis on the Sand Particles and Its Application for 4-Nonylphenol Removal from Surface Water

2021 ◽  
Author(s):  
Mastaneh Safari ◽  
Iman Mosaddegh

Silica sand filters are usually employed for water treatment. Their capacity for removal of 4-nonylphenol from the water streams is low. In addition, for using nano-adsorbents in the slurry mode, they should be removed at the end of the process. These problems in this study were solved by the immobilization of nanorods on silica particles. The acid-washed sand particles were mixed constantly with the garbage leachate on a heater so that they were covered completely with the garbage leachate. Then, the obtained particles were put in the furnace and pyrolyze (at varying temperatures in a range of 300 to 800 °C) for preparation of the nanocomposite. According to the scans from scanning electron microscopy and results of the Raman test, the nanotubes were formed on the silica surface. Furthermore, the EDS analysis results for carbon nanorods showed the existence of oxygen, silica, and a small amount of aluminium. The 4-Nonylphenol adsorption was examined using a new nanocomposite under various operating circumstances (initial concentration, contact time, temperature). The isotherm, kinetics, and thermodynamics of the adsorption process were also studied. Following a different regeneration process, data indicated that the novel developed material is an appropriate recyclable adsorbent that can be used in water treatment.

1998 ◽  
Vol 37 (9) ◽  
pp. 105-112 ◽  
Author(s):  
Ana María Ingallinella ◽  
Luis María Stecca ◽  
Martin Wegelin

This paper presents the methodology used for the rehabilitation of the pretreatment stage in a water treatment plant for a village located in Bolivia which has 3500 inhabitants. The treatment plant was initially composed by horizontal-flow roughing filters and slow sand filters, but due to the high contents of colloidal turbidity of the providing source, it did not work properly. A plan of rehabilitation was made which comprised laboratory tests, pilot tests and proposal of modifications based on the results of previous stages. The laboratory tests were made in order to find the optimum conditions to coagulate the raw water. It was found that horizontal-flow roughing filters must be turned into up-flow roughing filters, so a pilot plant was built and was operated for three months in order to find suitable design parameters. The results obtained obtained during the operation of the pilot plant and the proposal of modifications are presented. The results of operation of the final plant, which are also reported, demonstrated the advantages of the up-flow roughing filtration as a pretreatment stage when it is necessary to add chemical products in small treatment plants.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 325 ◽  
Author(s):  
Yi-Feng Ling ◽  
Peng Zhang ◽  
Juan Wang ◽  
Yan Shi

Both finer sand and nanoparticles have a filler effect on mechanical performance of cement-based composite. In this paper, the influence of sand size in mechanical performance of cement-based composites, containing polyvinyl alcohol fiber (PVA) and nano-SiO2 (NS), was investigated. The studied mechanical performance, included compressive, flexural, tensile strength, and fracture toughness. A 0.9% volumetric percentage of PVA and a 2% NS mass content were used to make cement-based composites with a 0.38 w/b. Silica sand with four sand size ranges (380–830 μm, 212–380 μm, 120–212 μm and 75–120 μm) was adopted as fine aggregate. The 28-day curing was conducted for all specimens under 20 °C and 95% humidity. It is concluded that the finer sand decreased workability and mechanical strength of PVA-reinforced composites containing NS. However, this reduction was very limited for the sand particles less than 380 µm. The ultimate tensile stain, fracture toughness, and energy were decreased as sand size declined. In addition, the fracture performance of the composites was greatly dependent on fracture energy.


2018 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Nurul Ismillayli ◽  
Laili Mardiana ◽  
Rina Kurnianingsih ◽  
Dhony Hermanto ◽  
Fahrurazi Fahrurazi

Penerapan teknologi tepat guna tentang proses pengolahan air siap minum dengan menggunakan metode filtrasi, adsorpsi dan reverse osmosis telah dilakukan. Rancangan alat  pengelolaan air siap minum menggunakan kombinasi filtrasi-adsorpsi meliputi saringan pasir lambat (terdiri dari pasir silika, arang aktif, ijuk, kapas, dan kerikil) membran selulosa, granula karbon, karbon aktif, membran RO (reverse osmosis), dan lampu ultraviolet untuk desinfikasi. Penentuan beberapa parameter fisik (bau, warna), kimia (pH, Fe, nitrit, amonia, BOD5, COD, DO) dan biologi (bakteri E-coli) dari sumber air (irigasi) dan air hasil pemurnian dilakukan di Laboratorium Kimia Universitas Mataram dan Balai Laboratorium Kesehatan Pengujian dan Kalibrasi Provinsi NTB. Air siap minum yang dihasilkan memiliki kualitas sesuai dengan baku mutu air minum Peraturan Menteri Kesehatan Nomor 492/Menkes/Per/IV/2010 Tanggal 19 April 2010. Hasil uji organoleptik menunjukkan bahwa masyarakat menyukai air hasil pengolahan dan merespon positif terhadap alih teknologi pengolahan air. Pembangunan sentra pengelohan air siap minum diharapkan menjadi edukasi bagi masyarakat mengenai perilaku hidup bersih dan sehat. Implementation of appropriate technology on the process of potable water using filtration, adsorption and reverse osmosis methods has been done. Its design used a combination of filtration-adsorption includes slow sand filters (consisting of silica sand, activated charcoal, palm fiber, cotton, and gravel) cellulosic membranes, carbon granules, activated carbon, RO (reverse osmosis) membranes, and ultraviolet for disinfection. Determination of several physical (odor, color), chemical (pH, Fe, nitrite, ammonia, BOD5, COD, DO) and biological parameters (E-coli) of purified water were conducted at Chemical Laboratory of Mataram University and Health Laboratory Testing and Calibration Center of West Nusa Tenggara Province. The potable water produced has quality according to the quality standard of drinking water Regulation of the Minister of Health No. 492/Menkes/Per/IV/2010 Date April 19, 2010. The organoleptic test showed that the community responds positively to the knowledge transfer of water treatment technology. The construction of potable water center is expected to educate the public about clean and healthy living behaviorKata kunci: filtrasi, adsorpsi, reverse osmosis, air sungai, air siap minum


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2659
Author(s):  
Muhammad Zaim Anaqi Zaimee ◽  
Mohd Sani Sarjadi ◽  
Md Lutfor Rahman

Natural occurrence and anthropogenic practices contribute to the release of pollutants, specifically heavy metals, in water over the years. Therefore, this leads to a demand of proper water treatment to minimize the harmful effects of the toxic heavy metals in water, so that a supply of clean water can be distributed into the environment or household. This review highlights several water treatment methods that can be used in removing heavy metal from water. Among various treatment methods, the adsorption process is considered as one of the highly effective treatments of heavy metals and the functionalization of adsorbents can fully enhance the adsorption process. Therefore, four classes of adsorbent sources are highlighted: polymeric, natural mineral, industrial by-product, and carbon nanomaterial adsorbent. The major purpose of this review is to gather up-to-date information on research and development on various adsorbents in the treatment of heavy metal from water by emphasizing the adsorption capability, effect of pH, isotherm and kinetic model, removal efficiency and the contact of time of every adsorbent.


2010 ◽  
Vol 10 (2) ◽  
pp. 145-156 ◽  
Author(s):  
S. A. Wakelin ◽  
D. W. Page ◽  
P. Pavelic ◽  
A. L. Gregg ◽  
P. J. Dillon

Factors affecting microbial diversity (richness) and community structure in biofilter columns were investigated. At a pilot filtration plant, granular activated carbon (GAC), anthracite and sand-based filters were used to treat stormwater from an urban catchment. After 12 weeks operation, sand media filters clogged (hydraulic conductivity declining by 90%) and all filters were destructively sampled. All biofilters had similar levels of polysaccharide in the surface layer, however only the sand columns clogged. This clogging may have been due to a combination of polysaccharide and small particle size, the development of a sand-specific microbial community, or other biogeochemical interactions. DNA fingerprinting was used to show that bacterial, archaeal and eukaryotic communities were present in all filter types and at all sampling depths (to 45 cm). The bacterial community was far richer (Margalefs index, d, 1.5–2) than the other groups. This was consistent across filter types and sampling depths. The structure of the bacteria and archaea communities in sand filters differed to those in GAC and anthracite filters (P<0.05). In contrast, eukaryotic communities were similar in surface biofilm layers, irrespective of filter type. As such, physicochemical properties of filters differentially influence the microbial community. Furthermore, we have established that archaea are distributed throughout biofilters; the role of these microorganisms in water treatment and filter function, particularly clogging, requires attention.


2010 ◽  
Vol 2 (5) ◽  
pp. 5-8
Author(s):  
Ramunė Albrektienė ◽  
Mindaugas Rimeika

The article examines different methods for determining organic matter and colour in water. Most of organic compounds in water have a humic substance. These substances frequently form complexes with iron. Humic matter gives water a yellow-brownish colour. Water filtration through conventional sand filters does not remove colour and organic compounds, and therefore complicated water treatment methods shall be applied. The methods utilized for organic matter determination in water included research on total organic carbon, permanganate index and the bichromate number of UV absorption of 254 nm wave length. The obtained results showed the greatest dependence between water colour and permanganate index. However, UV adsorption could be used for organic matter determination during the operation of a water treatment plant and the start-up of plants as easy and fast methods.


2013 ◽  
Vol 471 ◽  
pp. 81-85 ◽  
Author(s):  
Ahmad Razimi Mat Lazim ◽  
Abd Rahim Abu Bakar ◽  
Mohd Kameil Abdul Hamid ◽  
Izzat Mohd Asri

Researchers in recent years begin to explore on tribological behavior of automotive brake squeal phenomena which covers the morphology, chemical composition, friction and wear, phase composition and third body or friction film distribution. However less effort has been made to study the tribological on the influence of small particles on brake squeal. During braking condition, both rotor and pads are exposed to road environmental particle which may affect pads surface condition. In order to assess the influence of this particle on brake squeal a series of squeal tests were performed. Silica sand grit particles with a size range between 400 to 200 μm which most available on the road surface were used in this experiment. Brake pad and disc surface characteristics were analyzed before and after squealing condition using Scanning Electron Microscope (SEM) and Energy dispersive X-ray analysis (EDX). The result shows that the silica sand particles had influence the squeal and surface behavior of the brake pad.


Sign in / Sign up

Export Citation Format

Share Document