scholarly journals A site assessment tool for H2 storage in depleted hydrocarbon reservoirs

2021 ◽  
Author(s):  
Moein Jahanbani ◽  
Hamidreza M. Nick ◽  
Mohammad Reza Alizadeh Kiapi ◽  
Ali Mahmoodi

Hydrogen storage is a key component in realization of an emission free future. Depleted hydrocarbon reservoirs offer a low cost medium for large-scale hydrogen storage. While the effect of hydrogen in triggering some chemical and biochemical reactions has stablished some screening criteria to choose a suitable underground storage site according to reservoir geochemistry, there is no screening criteria based on the effect of variables such as pressure, temperature and composition of the residual hydrocarbon on hydrogen recovery. In this work, we first investigate the cost required for hydrogen compression in terms of the work required for compressors. Then we investigate the effect of reservoir pressure, storage pressure, reservoir temperature and residual composition on hydrogen recovery. Our results show that on one hand the work required for pressurizing hydrogen does not increase linearly with pressure, and on the other hand, hydrogen recovery increases with storage pressure. Additionally, Hydrogen recovery was shown to decrease by increase in reservoir initial pressure before hydrogen storage. Therefore, it seems that hydrogen storage will be more efficient if it is conducted at the highest possible pressure in a reservoir with low initial pressure (either a shallow reservoir, or a depleted reservoir). Our results did not show any strong relationship between hydrogen recovery and temperature. Hydrogen recovery showed to increase slightly with increase in residual hydrocarbon density. However, the effect of residual hydrocarbon was observed to be significant on purity of the produced hydrogen. In this sense, depleted black oil reservoirs seem to be the best and dry gas reservoirs the worst choice.

Diversity ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 47 ◽  
Author(s):  
Christian Kerbiriou ◽  
Yves Bas ◽  
Isabelle Le Viol ◽  
Romain Lorrillière ◽  
Justine Mougnot ◽  
...  

Few reports have been published on detection distances of bat calls because the evaluation of detection distance is complicated. Several of the approaches used to measure detection distances are based on the researcher’s experience and judgment. More recently, multiple microphones have been used to model flight path. In this study, the validity of a low-cost and simple detectability metric was tested. We hypothesize that the duration of an echolocating-bat-pass within the area of an ultrasonic bat detector is correlated with the distance of detection. Two independent datasets from a large-scale acoustic bat survey—a total of 25,786 bat-passes from 20 taxa (18 species and two genera)—were measured. We found a strong relationship between these measures of bat-pass duration and published detection distances. The advantages of bat-pass duration measures are that, for each study, experimenters easily produce their own proxy for the distance of detection. This indirect measure of the distance of detection could be mobilized to monitor the loss in microphone sensitivity used to monitor long-term population trends. Finally, the possibility of producing an index for distance of detection provides a weight for each bat species’ activity when they are aggregated to produce a bat community metric, such as the widely used “total activity”.


2012 ◽  
Vol 4 (2) ◽  
pp. 160-164 ◽  
Author(s):  
Cesare Pagura ◽  
Simona Barison ◽  
Cecilia Mortalò ◽  
Nicola Comisso ◽  
Mauro Schiavon

2011 ◽  
Vol 14 (11) ◽  
pp. 1998-2005 ◽  
Author(s):  
Bette Liu ◽  
Heather Young ◽  
Francesca L Crowe ◽  
Victoria S Benson ◽  
Elizabeth A Spencer ◽  
...  

AbstractObjectivesTo describe the development of the Oxford WebQ, a web-based 24 h dietary assessment tool developed for repeated administration in large prospective studies; and to report the preliminary assessment of its performance for estimating nutrient intakes.DesignWe developed the Oxford WebQ by repeated testing until it was sufficiently comprehensive and easy to use. For the latest version, we compared nutrient intakes from volunteers who completed both the Oxford WebQ and an interviewer-administered 24 h dietary recall on the same day.SettingOxford, UK.SubjectsA total of 116 men and women.ResultsThe WebQ took a median of 12·5 (interquartile range: 10·8–16·3) min to self-complete and nutrient intakes were estimated automatically. By contrast, the interviewer-administered 24 h dietary recall took 30 min to complete and 30 min to code. Compared with the 24 h dietary recall, the mean Spearman's correlation for the 21 nutrients obtained from the WebQ was 0·6, with the majority between 0·5 and 0·9. The mean differences in intake were less than ±10 % for all nutrients except for carotene and vitamins B12 and D. On rare occasions a food item was reported in only one assessment method, but this was not more frequent or systematically different between the methods.ConclusionsCompared with an interviewer-based 24 h dietary recall, the WebQ captures similar food items and estimates similar nutrient intakes for a single day's dietary intake. The WebQ is self-administered and nutrients are estimated automatically, providing a low-cost method for measuring dietary intake in large-scale studies.


2021 ◽  
Author(s):  
Eike Marie Thaysen ◽  
Sean McMahon ◽  
Gion J. Strobel ◽  
Ian B. Butler ◽  
Bryne Ngwenya ◽  
...  

<p>Zero carbon energy generation from renewable sources can reduce climate change by mitigating carbon emissions. A major challenge of renewable energy generation is the imbalance between supply and demand. Subsurface hydrogen storage in porous media <sub></sub>is suggested as a large-scale and economic means to overcome these energy imbalances. However, hydrogen is an electron donor for many subsurface microbial processes which may have important implications for hydrogen recovery, gas injectivity and corrosion.</p><p>We reviewed the state-of-the-art literature on the controls on the three major hydrogen-consuming processes in the subsurface: methanogenesis, homoacetogenesis, and sulphate reduction, as a basis to develop a hydrogen storage site selection tool. Sites with low temperature (<70°C), zero to moderate salinity (0-0.6 M) and close to neutral pH values provide the best growth conditions for most of the hydrogen-consuming methanogens, homoacetogens and sulphate reducers. Conversely, fewer strains are adapted to more extreme conditions (high temperature and pressure, increased salinity and acidic or alkaline pH), favouring hydrogen storage in these sites.</p><p>Testing our tool on 42 depleted gas and oil fields of the British and Norwegian North Sea and the Irish Sea showed that seven of the fields may be considered sterile with respect to hydrogen-consuming microorganisms due to either temperatures >122 °C or salinities >5 M NaCl. Only three fields can sustain all of the major hydrogen-consuming processes, due to either temperature, salinity or pressure constraints in the remaining fields. We calculated a potential microbial growth in the order of 1-17*10<sup>7</sup> cells ml<sup>-1</sup> for these fields. The associated hydrogen consumption is negligible to small (<0.01-3.2 % of the stored hydrogen). Our results will advance a faster transition to a lower carbon energy supply by helping inform decisions about where hydrogen can be stored in the future.</p>


Author(s):  
Sheng Ye ◽  
Jinyang Zheng ◽  
Ting Yu ◽  
Chaohua Gu ◽  
Zhengli Hua

Abstract Large scale storage of hydrogen is one of the key factors in hydrogen energy development. High-pressure hydrogen storage technology is widely used in hydrogen storage. It has advantages of easy operating, quick charge and discharge, simple equipment structure and low cost. The multi-layered steel vessel (MLSV) was developed for stationary hydrogen storage, which was flexible in design, safe in operation and convenient in fabrication. MLSV has been used in several hydrogen refueling stations in China. With the construction of hydrogen refueling stations accelerated, the vessel was required to be larger, lighter and cheaper. First, the basic structure of the MLSV was presented. Second, two light-weight methods were proposed and compared, including reducing the safety factor and increasing the strength of the steel band. Finally, the stress in the cylindrical shell of the MLSV using light-weight design were compared with the previous one. In addition, a MLSV using the light-weight method of reducing safety factor has been designed and fabricated, which can store 211 kg gaseous hydrogen at 50MPa.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Amrita Srivathsan ◽  
Emily Hartop ◽  
Jayanthi Puniamoorthy ◽  
Wan Ting Lee ◽  
Sujatha Narayanan Kutty ◽  
...  

Abstract Background More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. Results We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). Conclusions We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao Li Ma ◽  
Guang Tao Fei ◽  
Shao Hui Xu

Abstract In this study, polyaniline (PANI) is prepared by means of chemical oxidization polymerization and directly loaded on the modified fiber ball (m-FB) to obtain macroscale polyaniline/modified fiber ball (PANI/m-FB) composite, and then its removal ability of Cr(VI) is investigated. The effects of different parameters such as contact time, pH value and initial concentration on Cr(VI) removal efficiency are discussed. The experimental results illustrate that the favorable pH value is 5.0 and the maximum removal capacity is measured to be 293.13 mg g−1. Besides, PANI/m-FB composites can be regenerated and reused after being treated with strong acid. The kinetic study indicates that the adsorption procedure is mainly controlled by chemical adsorption. More importantly, the macroscale of composites can avoid secondary pollution efficiently. Benefiting from the low cost, easy preparation in large scale, environmentally friendly, excellent recycling performance as well as high removal ability, PANI/m-FB composites exhibit a potential possibility to remove Cr(VI) from industrial waste water. Graphic Abstract The polyaniline (PANI) was coated on modified fiber ball (m-FB) to remove Cr(VI) in waste water, and this kind of PANI/m-FB composites can avoid secondary pollution efficiently due to its macrostructure. Furthermore, the removal capacity can reach to 291.13 mg/g and can be multiple reused.


2020 ◽  
Vol 9 (1) ◽  
pp. 751-759 ◽  
Author(s):  
Xinxin Lian ◽  
Yuanjiang Lv ◽  
Haoliang Sun ◽  
David Hui ◽  
Guangxin Wang

AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.


Sign in / Sign up

Export Citation Format

Share Document