scholarly journals From 2D to 3D: enhanced access to human conscious awareness

2020 ◽  
Author(s):  
Liad Mudrik ◽  
Uri Korisky

Most of our interactions with our environment involve manipulating real, 3D objects. Accordingly, 3D objects seem to enjoy preferential processing compared with 2D images, for example in capturing attention or being better remembered. But are they also more readily perceived? Thus far, the possible preferred access of real, 3D objects to awareness could not be empirically tested, as suppression was only applied to on-screen stimuli; Here, using a variant of Continuous Flash Suppression (CFS) with augmented reality goggles (“real-life” CFS), we managed to suppress both real, 3D objects and their 2D representations. In healthy young adults, real objects escaped suppression faster than their photographs. Using 3D printing, we also showed that this only holds for meaningful objects, while no difference was found for meaningless, novel ones. This suggests that the effect is uniquely mediated by affordances, shown here to be evoked by 3D objects even before these emerge to awareness.

2021 ◽  
pp. 095679762110107
Author(s):  
Uri Korisky ◽  
Liad Mudrik

Most of our interactions with our environment involve manipulating real 3D objects. Accordingly, 3D objects seem to enjoy preferential processing compared with 2D images, for example, in capturing attention or being better remembered. But are they also more readily perceived? Thus far, the possibility of preferred detection for real 3D objects could not be empirically tested because suppression from awareness has been applied only to on-screen stimuli. Here, using a variant of continuous flash suppression (CFS) with augmented-reality goggles (“real-life” CFS), we managed to suppress both real 3D objects and their 2D representations. In 20 healthy young adults, real objects broke suppression faster than their photographs. Using 3D printing, we also showed in 50 healthy young adults that this finding held only for meaningful objects, whereas no difference was found for meaningless, novel ones (a similar trend was observed in another experiment with 20 subjects, yet it did not reach significance). This suggests that the effect might be mediated by affordances facilitating detection of 3D objects under interocular suppression.


2018 ◽  
Author(s):  
Uri Korisky ◽  
Rony Hirschhorn ◽  
Liad Mudrik

Notice: a peer-reviewed version of this preprint has been published in Behavior Research Methods and is available freely at http://link.springer.com/article/10.3758/s13428-018-1162-0Continuous Flash Suppression (CFS) is a popular method for suppressing visual stimuli from awareness for relatively long periods. Thus far, it has only been used for suppressing two-dimensional images presented on-screen. We present a novel variant of CFS, termed ‘real-life CFS’, with which the actual immediate surroundings of an observer – including three-dimensional, real life objects – can be rendered unconscious. Real-life CFS uses augmented reality goggles to present subjects with CFS masks to their dominant eye, leaving their non-dominant eye exposed to the real world. In three experiments we demonstrate that real objects can indeed be suppressed from awareness using real-life CFS, and that duration suppression is comparable that obtained using the classic, on-screen CFS. We further provide an example for an experimental code, which can be modified for future studies using ‘real-life CFS’. This opens the gate for new questions in the study of consciousness and its functions.


2005 ◽  
Vol 14 (3) ◽  
pp. 264-277 ◽  
Author(s):  
Hee Lin Wang ◽  
Kuntal Sengupta ◽  
Pankaj Kumar ◽  
Rajeev Sharma

Developing a seamless merging of real and virtual image streams and 3D models is an active research topic in augmented reality (AR). We propose a method for real-time augmentation of real videos with 2D and 3D objects by addressing the occlusion issue in an unique fashion. For virtual planar objects (such as images), the 2D overlay is automatically overlaid in a planar region selected by the user in the video. The overlay is robust to arbitrary camera motion. Furthermore, a unique background-foreground segmentation algorithm renders this augmented overlay as part of the background if it coincides with foreground objects in the video stream, giving the impression that it is occluded by foreground objects. The proposed technique does not require multiple cameras, camera calibration, use of fiducials, or a structural model of the scene to work. Extending the work further, we propose a novel method of augmentation by using trifocal tensors to augment 3D objects in 3D scenes to similar effect and implement it in real time as a proof of concept. We show several results of the successful working of our algorithm in real-life situations. The technique works on a real-time video from a USB camera, Creative Webcam III, onaPIV1.6GHz system without any special hardware support.


2021 ◽  
Author(s):  
Karthika. S ◽  
Varsha.G ◽  
Deepika. R

Augmented reality is a technology where real life environment is enhanced by incorporating digital or virtual elements like images, graphics, 3D objects into it. Augmented reality is a growing and trending technology which can make interactions easier when incorporated into normal applications. The aim of this project is to create an augmented reality food guide for food allergic consumers to aid them in choosing allergen free foods. A person who wants to order food online or in restaurants doesn’t know whether it would be suitable for him to eat or not. Especially if they are allergic to certain foods, they have to be preventive and cautious in choosing the type of food they eat. This AR guide will aid them in choosing the suitable food for them in an augmented environment where a consumer can view food in three dimension view along with the necessary information about the food such as the key ingredients and the presence of any allergens that will be helpful in choosing the allergen free food.


2010 ◽  
Vol 15 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Christopher J. Ferguson ◽  
Stephanie M. Rueda

This article explores commonly discussed theories of violent video game effects: the social learning, mood management, and catharsis hypotheses. An experimental study was carried out to examine violent video game effects. In this study, 103 young adults were given a frustration task and then randomized to play no game, a nonviolent game, a violent game with good versus evil theme (i.e., playing as a good character taking on evil), or a violent game in which they played as a “bad guy.” Results indicated that randomized video game play had no effect on aggressive behavior; real-life violent video game-playing history, however, was predictive of decreased hostile feelings and decreased depression following the frustration task. Results do not support a link between violent video games and aggressive behavior, but do suggest that violent games reduce depression and hostile feelings in players through mood management.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 900
Author(s):  
Hanseob Kim ◽  
Taehyung Kim ◽  
Myungho Lee ◽  
Gerard Jounghyun Kim ◽  
Jae-In Hwang

Augmented reality (AR) scenes often inadvertently contain real world objects that are not relevant to the main AR content, such as arbitrary passersby on the street. We refer to these real-world objects as content-irrelevant real objects (CIROs). CIROs may distract users from focusing on the AR content and bring about perceptual issues (e.g., depth distortion or physicality conflict). In a prior work, we carried out a comparative experiment investigating the effects on user perception of the AR content by the degree of the visual diminishment of such a CIRO. Our findings revealed that the diminished representation had positive impacts on human perception, such as reducing the distraction and increasing the presence of the AR objects in the real environment. However, in that work, the ground truth test was staged with perfect and artifact-free diminishment. In this work, we applied an actual real-time object diminishment algorithm on the handheld AR platform, which cannot be completely artifact-free in practice, and evaluated its performance both objectively and subjectively. We found that the imperfect diminishment and visual artifacts can negatively affect the subjective user experience.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Maryna Gorlachova ◽  
Boris Mahltig

AbstractThe actual paper is related to adhesive properties of 3D objects printed on cotton textile fabrics. For practical applications of 3D prints in the textile sector, the adhesion of the printed object on the textile substrate is an important issue. In the current study, two different types of polymers are printed on cotton – polylactide acid (PLA) and polyamide 6.6 (Nylon). Altogether six cotton fabrics differing in structure, weight and thickness are evaluated. Also, the effect of washing and enzymatic desizing is investigated. For printing parameters, best results are gained for elevated process temperatures, intermediate printing speed and low Z-distance between printing head and substrate. Also, a textile treatment by washing and desizing can improve the adhesion of an afterwards applied 3D print. The presented results are quite useful for future developments of 3D printing applications on textile substrates, e.g. to implement new decorative features or protective functions.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Weikang Xu ◽  
Zhentao Zhang ◽  
Xiaomei Cai ◽  
Yazhen Hong ◽  
Tianliang Lin ◽  
...  

AbstractEffective treatment of frequent oil spills and endless discharged oily wastewater is crucial for the ecosystem and human health. In the past two decades, the collection of oil from water surface has been widely studied through the simple fabrication of superhydrophobic meshes with various coating materials, but little attention is paid to the design aspects of the meshes based oil-collecting device and practical oil collection. Here, 3D-printing devices with different configurations of (super)hydrophobic meshes, circular truncated cone (CTC), cylinder and inverted CTC, and the same inverted cone-shaped structure (below the meshes for temporary oil storage) are investigated. Results demonstrate that the CTC meshes based device especially for an oblate one not only shows higher stability and discharge of the collected oils than previous reports, but also allows floating oils to enter the (super)hydrophobic mesh faster. We anticipate that future success in developing high-performance (super)hydrophobic meshes and the further optimization of the CTC mesh-based device parameters will make our proposed device more practical for the treatment of real-life oil spills.


Sign in / Sign up

Export Citation Format

Share Document