scholarly journals Portable, non-destructive colorimetry and visible reflectance spectroscopy can accurately identify heat-treated South African silcrete

2021 ◽  
Author(s):  
John K. Murray ◽  
Simen Oestmo ◽  
Andrew M. Zipkin

The objective of this study was to determine if visible reflectance spectroscopy and quantitative colorimetry represent viable approaches to classifying the heat treatment state of silcrete. Silcrete is a soil duricrust that has been used as toolstone since at least the Middle Stone Age. The ancient practice of heat treating silcrete prior to knapping is of considerable interest to paleolithic archaeologists because of its implications for early modern human complex cognition generally and the ability to manipulate the material properties of stone specifically. Here, we demonstrate that our quantitative, non-invasive, and portable approach to measuring color, used in conjunction with k-Nearest Neighbors “lazy” machine learning, is a highly promising method for heat treatment detection. Traditional, expert human analyst approaches typically rely upon subjective assessments of color and lustre and comparison to experimental reference collections. This strongly visual method can prove quite accurate, if difficult to reproduce between different analysts. It is thus surprising that until now, no published study has sought to exploit an instrumental approach to measuring color for classifying heat treatment state in silcrete. In this work, we measured percent reflectance for the visible spectrum (1018 variables) and tristimulus color values (CIEL*a*b*) in unheated and experimentally heat treated silcrete specimens from three sources in South Africa. k-NN classification proved highly effective with both the spectroscopy and colorimetry data sets. An important innovation was using the heat treatment state predicted by the k-NN model for the majority of replicate observations of a single specimen to predict the heat treatment state for the specimen overall. When this majority voting approach was applied to the 746 individual observations in this study, associated with 94 discrete silcrete flakes, both spectroscopy and colorimetry k-NN models yielded 0% test set misclassification rates at the specimen level.

1985 ◽  
Vol 31 (12) ◽  
pp. 2028-2030 ◽  
Author(s):  
I Houssein ◽  
H Wilcox ◽  
J Barron

Abstract Incubation of serum and plasma samples at 56 degrees C for 30 min inactivates the HTLV-III virus. We assessed the effect of this procedure on results of routine biochemical tests by dividing samples of serum and plasma into two, heat-treating one while the other remained at room temperature. Samples were then analyzed in an SMA 16/60, an Astra-8, an Analox glucose analyzer, a Cobas Bio centrifugal analyzer, and manually for salicylate and acetaminophen (paracetamol). Most of the differences produced by heat treatment were not clinically significant, although heated samples proved unsuitable for use in assay of some commonly measured enzymes. Serum evidently is preferable to plasma for this procedure, and heat-treated serum samples can validly be used for most routine analyses. Thus this procedure makes safer the analysis of samples from patients with suspected or proven acquired immune deficiency syndrome (AIDS).


2021 ◽  
pp. 307-325
Author(s):  
Jon L. Dossett

Abstract This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.


2007 ◽  
Vol 336-338 ◽  
pp. 1827-1828 ◽  
Author(s):  
Ji Yong Pan ◽  
Jiang Hong Gong

Iron phosphate glasses with composition of 20Li2O-32Fe2O3-48P2O5 (in mol%) was prepared by melting, crushing and heat-treating process and the electrical properties were examined. It was found that the sample heat-treated at a temperature close to the glass transition temperature exhibit the maximum conductivity and the lowest activation energy, implying that heat-treatment may play an important role in the electrical properties of the glasses.


2010 ◽  
Vol 6 (3) ◽  
pp. 373-382
Author(s):  
Ali Nazari ◽  
Shadi Riahi

PurposeThe aims of this study is to analyze failure of two types of high‐strength low‐alloy (HSLA) steels which are used in wheel bolts 10.9 grade, boron steel and chromium‐molybdenum steel, before and after heat treatment.Design/methodology/approachThe optimum heat treatment to obtain the best tensile behavior was determined and Charpy impact and Rockwell hardness tests were performed on the two steel types before and after the optimum heat treating.FindingsFractographic studies show a ductile fracture for heat‐treated boron steel while indicate a semi‐brittle fracture for heat‐treated chromium‐molybdenum steel. Formation of a small boron carbide amount during heat treating of boron steel results in increment the bolt's tensile strength while the ductility did not changed significantly. In the other hand, formation of chromium and molybdenum carbides during heat treating of chromium‐molybdenum steel increased the bolt's tensile strength with a considerable reduction in the final ductility.Originality/valueThis paper evaluates failure analysis of HSLA wheel bolt steels and compares their microstructure before and after the loading regime.


Author(s):  
Brian A. Murtha ◽  
Anil K. Kulkarni ◽  
Jogender Singh

The sintering phenomenon is examined in highly porous materials by first cold pressing powdered copper and silver and separately heat treating them in an un-pressurized furnace. The initial microstructure prior to heat treatment as compared to that after heat treatment showed similar characteristics regardless of the material or powder geometry. However, after heat treatment, there are significantly different microstructures among samples. The microstructures depend on the maximum furnace temperature, the particle geometry, material composition, and the particle surface area. While the microstructures change significantly, there is no change in porosity between pre- and post-heat treated samples.


Alloy Digest ◽  
1959 ◽  
Vol 8 (2) ◽  

Abstract Firth-Vickers FV.520 is a chromium-nickel stainless steel that can be hardened by a low temperature heat treatment or supplied in a heat-treated, tough, but machinable condition with a tensile strength of 140,000 psi. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-84. Producer or source: Firth-Vickers Stainless Steels Ltd.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5895-5900 ◽  
Author(s):  
INSOO KIM ◽  
SAIDMUROD AKRAMOV ◽  
HAE BONG JEONG

The physical, mechanical properties and formability of sheet metal depend on preferred crystallographic orientations (texture). In this research work, we investigated texture development and formability of AA 3003 aluminum alloy sheets after asymmetry rolling and subsequent heat treatment. After asymmetry rolling, the specimens showed fine grain size. We also investigated the change of the plastic strain ratios after asymmetry rolling and subsequent heat-treating condition. The plastic strain ratios of asymmetrically rolled and subsequent heat treated samples are 1.5 times higher than the initial AA 3003 Al alloy sheets. These could be attributed to the formation of ND//<111> texture component through asymmetry rolling in Al sheet.


2005 ◽  
Vol 475-479 ◽  
pp. 81-84
Author(s):  
Sung Kang Hur ◽  
Kee Sam Shin ◽  
Jung Hoon Yoo ◽  
Ja Min Koo ◽  
Soo Lee ◽  
...  

The evolution of microstructure and its effects on the mechanical properties of modified 9%Cr-1%Mo steel during heat-treating at 1050°C for 15 min and then isothermal heat treatment at 380~760°C with subsequent air-cooling have been investigated. For the microstructural and mechanical property analyses, OM, SEM, EDS, XRD, hardness and impact tests were used. In accordance with the severity of the heat-treatment, the microstructure evolved from the untransformed martensite to the partially transformed dual phases of martensite and ferrite, and then fully transformed to ferrite. Impact values at ambient temperature for specimens isothermally heat-treated at 320 - 380°C, predominantly at about 350°C were lower than others’ with similar martensitic structure. The partially transformed specimens with dual phases of martensite and ferrite also showed lower impact values than samples with untransformed with martensitic, and transformed with ferritic structures.


2020 ◽  
Vol 35 (2) ◽  
pp. 185-194
Author(s):  
Jenna Raunio ◽  
Toni Asikainen ◽  
Marko Wilo ◽  
Emmi Kallio ◽  
Levente Csóka

AbstractPolylactic acid fibrils (PLAf) were employed as a fiber component in papermaking. The addition of 5 wt % of PLAf to bleached kraft birch pulp increased the tensile index of the resulting 100 g/m2 paper sheets by 20 % in comparison to sheets produced without PLAf. By heat-treating the paper sheets containing 5 wt % PLAf, a 35 % higher tensile index in comparison to sheets produced without PLAf was achieved. SEM imaging showed that the heat-treatment caused the PLAf to melt, which formed a film on the fiber web. The PLAf was ultrasonicated in an attempt to make its surface more hydrophilic and anionic and thus more compatible with cellulose. Chemical additives (cationic polyacrylamide, polyethylene imine and polyethylene glycol) were added to the PLAf/cellulose pulp mixture in order to increase the binding between the ultrasonicated PLAf and cellulose. Ultrasonication caused the PLAf length to decrease and the PLAf surface charge changed by 36 %, indicating that the PLAf became significantly more anionic. Neither ultrasonication of PLAf nor the chemical additives improved the paper sheets’ stretchability. Polyethyleneimine as an additive in an amount of 1 % increased the tensile index of heat-treated sheets made with 5 wt % of PLAf by 19 %.


2013 ◽  
Vol 765 ◽  
pp. 434-438 ◽  
Author(s):  
Adam S. Taylor ◽  
Matthias Weiss ◽  
Tim Hilditch ◽  
Peter D. Hodgson ◽  
Nicole Stanford

Sheets of precipitate hardenable 2024 aluminium have been processed by rolling at liquid nitrogen temperature in order to refine the microstructure. A number of different aging/heat treating procedures have been utilised that have resulted in significantly different mechanical properties. The cryo-rolled material was heat treated at 150 °C for varying times and the resulting mechanical properties evaluated as a function of this holding time. The resulting properties were found to be strongly influenced by precipitates that formed either during the aging step, rolling process or the subsequent heat treatment. The formability of the cryo-rolled and heat treated material has been investigated using a limiting dome height test (Erichsen cupping test).


Sign in / Sign up

Export Citation Format

Share Document