scholarly journals Eucalyptus Plantation in Farmlands: A Prospective Source of Economic Returns in Bhabar Terai Zones of Nepal

1970 ◽  
Vol 3 ◽  
pp. 81-85
Author(s):  
Shiva S Neupane

The Bhabar Terai zone lies immediately at the foot of the Siwalik hills and consist of bouldery and gravelly areas derived from alluvial fans at the base of the hills. Many of the streams flowing from the hills disappear into the very freely drained soil of this area to reappear again in the Terai proper. The soil is not good for the production of food/cereal crops. Eucalyptus species is fast growing and can grow on wide range of climatic conditions. There are special types of farm relations with Eucalyptus in Bhabar Terai. Most of the farmers in this region have Eucalyptus plantations to support their livelihood. It is obvious that Eucalyptus is one of the appropriate tree species to grow in Siwalik and Bhabar zones to get more economic return within the short period of time. Farmers have been accepting to grow Eucalyptus as an integral part of their overall farming systems to maximize their annual income from the same piece of land along with the other tree and cereal crops combinations from the sale of these tree products. Key Words: Bhabar Terai, Eucalyptus plantation, Economic returns, Livelihood support DOI: 10.3126/init.v3i0.2430 The Initiation Vol.3 2009 p.81-85

2020 ◽  
Vol 8 (6) ◽  
pp. 811 ◽  
Author(s):  
Jie Xu ◽  
Bing Liu ◽  
Zhao-lei Qu ◽  
Yang Ma ◽  
Hui Sun

Soil microorganisms and extracellular enzymes play important roles in soil nutrient cycling. Currently, China has the second-largest area of eucalyptus plantations in the world. Information on the effects of eucalyptus age and species of trees on soil microbial biomass and enzyme activities, however, is limited. In this paper, the soil microbial biomass and enzyme activities were studied in eucalyptus plantations with different ages (1 and 5+ years) and species of trees (E. urophylla×E. grandis, E. camaldulens and E. pellita) in South China. The results showed that both plantation age and eucalyptus species could affect the total microbial biomass and fungal biomass, whereas the bacterial biomass was affected only by plantation age. The fungal biomass and the fungi-to-bacteria ratio significantly increased along with increasing plantation age. Similarly, the plantation age and eucalyptus species significantly affected the enzyme activities associated with carbon cycling (β-xylosidase, β-d-glucuronidase, β-cellobiosidase and β-glucosidase). The activities of β-d-glucuronidase and β-glucosidase were significantly higher in the E. camaldulens plantation. The enzymes involved in nitrogen (N-acetyl-glucosamidase) and sulfur (sulfatase) cycling were only affected by the eucalyptus plantation age and species, respectively. The results highlight the importance of the age and species of eucalyptus plantations on soil microbial activities.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract F. convolvulus is a weedy species of gardens, cultivated fields, open habitats, orchards, non-crop areas, waste areas, and disturbed sites. It is well-adapted to a wide range of climatic conditions and soils. This species is a prolific seed producer and has the potential to produce up to 30,000 seeds/plant. Seeds can be dispersed by farm machinery, and water. It is also a common contaminant of wheat and other cereal crops. F. convolvulus is often a serious weed in cereals, vegetables and horticultural crops (FAO, 2015). Currently, it is listed as invasive in the Dominican Republic, Cuba, Australia, New Caledonia, and New Zealand (Webb et al., 1988; MacKee, 1994; Wilson, 2008; Acevedo-Rodriguez and Strong, 2012), but it is also ranked as a serious weed in 20 crops in more than 41 countries around the world (Holm et al., 1991). Distribution.


2020 ◽  
Vol 12 (7) ◽  
pp. 2659 ◽  
Author(s):  
Johannes Persson ◽  
Kristina Blennow ◽  
Luísa Gonçalves ◽  
Alexander Borys ◽  
Ioan Dutcă ◽  
...  

The role of values in climate-related decision-making is a prominent theme of climate communication research. The present study examines whether forest professionals are more driven by values than scientists are, and if this results in value polarization. A questionnaire was designed to elicit and assess the values assigned to expected effects of climate change by forest professionals and scientists working on forests and climate change in Europe. The countries involved covered a north-to-south and west-to-east gradient across Europe, representing a wide range of bio-climatic conditions and a mix of economic–social–political structures. We show that European forest professionals and scientists do not exhibit polarized expectations about the values of specific impacts of climate change on forests in their countries. In fact, few differences between forest professionals and scientists were found. However, there are interesting differences in the expected values of forest professionals with regard to climate change impacts across European countries. In Northern European countries, the aggregated values of the expected effects are more neutral than they are in Southern Europe, where they are more negative. Expectations about impacts on timber production, economic returns, and regulatory ecosystem services are mostly negative, while expectations about biodiversity and energy production are mostly positive.


Author(s):  
Victor Hugo Cruz ◽  
Rafael Simões Tomaz ◽  
Ronaldo Cintra Lima

The irregularity and uneven distribution of rainfall may restrict the potential productive development of soybeans, causing numerous losses to farmers. The use of irrigation systems in hydrically heterogeneous areas are important measures that should be adopted during the crop cycle. Furthermore, the implementation of conservationist strategies, such as crop rotation or intercropping and no-till (NT) farming systems, can minimize the damage caused by water deficit. Therefore, the present study aimed to evaluate the soybean yield under different irrigation sheets and cropping systems in the extreme west of São Paulo. A completely randomized design was used, with 10 repetitions, in a subdivided plot scheme. The treatments were composed of different cropping systems in the plots, with four levels (conventional system; NT, using Urochloa brizantha  cv Paiaguás; U. brizantha  cv Piatã; and  U. ruziziensis  cv Ruziziensis), and different irrigation scheduling in the subplots, with three levels of irrigation scheduling (0%, 70% and 100%) based on reference evapotranspiration (ETo). Irrigation rates of 70% and 100% ETo in the conventional system provided higher grain yields under the climatic conditions in which the experiment was conducted. However, the continuity of long-term research is necessary, since NT is incipient, and have been implemented only two years ago. This is a relatively short period to observe the advantages of this cultivation system and for its consolidation process. Thus, the Brachiaria residual dry mass showed similar behavior in NT at the irrigation levels evaluated.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 778
Author(s):  
Hua-Yan Chen ◽  
Jie-Min Yao ◽  
Shao-Bin Huang ◽  
Hong Pang

Eucalyptus species have become one of the most commonly planted trees worldwide, including China, due to their fast growth and various commercial applications. However, the productivity of Eucalyptus plantations has been threatened by exotic invasive insect pests in recent years. Among these pests, gall inducers of the genus Ophelimus of the Eulophidae family are among the most important invasive species in Eucalyptus plantations. We report here for the first time the presence of a new invasive Eucalyptus gall wasp, Ophelimus bipolaris sp. n., in Guangzhou, China, which also represents the first species of the genus reported from China. The identity of the new species was confirmed by an integrative approach combing biological, morphological and molecular evidence. The new species is described and illustrated. This wasp induces galls only on the leaf blade surface of four Eucalyptus species: E. grandis, E. grandis × E. urophylla, E. tereticornis and E. urophylla. Our preliminary observation showed that O. bipolaris could complete a life cycle on E. urophylla in approximately 2 months under local climatic conditions (23.5–30 °C). Considering the severe damage it may cause to Eucalyptus production, further investigations of its biology and control are urgently needed in China.


2021 ◽  
Author(s):  
Elizabeth J Messick ◽  
Christopher E Comer ◽  
Michael A Blazier ◽  
T Bently Wigley

Abstract In the southern United States, some landowners have established plantations of eucalyptus (Eucalyptus spp.) and are managing them on short rotations (<15 years) to provide wood for fiber and other potential uses. Establishment of short-rotation woody crops dominated by nonnative species has implications for resident fauna in the United States that are largely unknown. We compared avifauna abundance, diversity, and community composition in newly established Camden white gum (Eucalyptus benthamii) plantations with slash pine (Pinus elliottii) plantations of the same age and height (one to two and six to seven years old, respectively) in southwestern Louisiana, USA. Species richness, diversity, and community composition in newly established eucalyptus plantations and six- to seven-year-old pines were similar. More birds were observed, and bird detections varied less in eucalyptus plantations. Indigo buntings (Passerina cyanea) and other shrub-associated species were detected more often in eucalyptus stands. In contrast, species that inhabit herbaceous-dominated communities, such as eastern meadowlarks (Sturnella magna), or that were associated with a dense graminoid community (e.g., Bachman’s sparrow [Peucaea aestivalis]) were detected less often in eucalyptus. Overall, breeding bird communities in eucalyptus plantations one to two years postestablishment differed little from plantations dominated by slash pine. Study Implications Compared with slash pine (Pinus elliottii Englem) plantations of similar age and height (one to two years and six to seven years old, respectively) we found one- to two-year-old eucalyptus (Eucalyptus benthamii Maiden & Cambage) plantations supported similar avian species richness and diversity to six- to seven-year-old pine stands. Furthermore, we found these eucalyptus plantations (E13) supported an avian community that was intermediate to similar aged pine (S13) and pine of similar height (S08). However, avian communities will likely change as eucalyptus plantations age (Christian et al. 1997). Continued monitoring and assessment of community composition, richness, and abundance is important for determining the magnitude of this change. Future investigations focused on nest success, fecundity, postfledging monitoring, and survivorship compared with other types of planted forests and native cover types would help us better understand eucalyptus plantation effects on avifauna demographics (Van Horne 1983, Martin 1998, Jones 2001, Wood et al. 2004, Sage et al. 2006, Riffell et al. 2011).


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Luiza Tymińska-Czabańska ◽  
Jarosław Socha ◽  
Marek Maj ◽  
Dominika Cywicka ◽  
Xo Viet Hoang Duong

Site productivity provides critical information for forest management practices and is a fundamental measure in forestry. It is determined using site index (SI) models, which are developed using two primary groups of methods, namely, phytocentric (plant-based) or geocentric (earth-based). Geocentric methods allow for direct site growth modelling, in which the SI is predicted using multiple environmental indicators. However, changes in non-static site factors—particularly nitrogen deposition and rising CO2 concentration—lead to an increase in site productivity, which may be visible as an age trend in the SI. In this study, we developed a geocentric SI model for oak. For the development of the SI model, we used data from 150 sample plots, representing a wide range of local topographic and site conditions. A generalized additive model was used to model site productivity. We found that the oak SI depended predominantly on physicochemical soil properties—mainly nitrogen, carbon, sand, and clay content. Additionally, the oak SI value was found to be slightly shaped by the topography, especially by altitude above sea level, and topographic position. We also detected a significant relationship between the SI and the age of oak stands, indicating the long-term increasing site productivity for oak, most likely caused by nitrogen deposition and changes in climatic conditions. The developed geocentric site productivity model for oak explained 77.2% of the SI variation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ewa Przeździecka ◽  
P. Strąk ◽  
A. Wierzbicka ◽  
A. Adhikari ◽  
A. Lysak ◽  
...  

AbstractTrends in the behavior of band gaps in short-period superlattices (SLs) composed of CdO and MgO layers were analyzed experimentally and theoretically for several thicknesses of CdO sublayers. The optical properties of the SLs were investigated by means of transmittance measurements at room temperature in the wavelength range 200–700 nm. The direct band gap of {CdO/MgO} SLs were tuned from 2.6 to 6 eV by varying the thickness of CdO from 1 to 12 monolayers while maintaining the same MgO layer thickness of 4 monolayers. Obtained values of direct and indirect band gaps are higher than those theoretically calculated by an ab initio method, but follow the same trend. X-ray measurements confirmed the presence of a rock salt structure in the SLs. Two oriented structures (111 and 100) grown on c- and r-oriented sapphire substrates were obtained. The measured lattice parameters increase with CdO layer thickness, and the experimental data are in agreement with the calculated results. This new kind of SL structure may be suitable for use in visible, UV and deep UV optoelectronics, especially because the energy gap can be precisely controlled over a wide range by modulating the sublayer thickness in the superlattices.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 931
Author(s):  
Mona Giraud ◽  
Jannis Groh ◽  
Horst H. Gerke ◽  
Nicolas Brüggemann ◽  
Harry Vereecken ◽  
...  

Grasslands are one of the most common biomes in the world with a wide range of ecosystem services. Nevertheless, quantitative data on the change in nitrogen dynamics in extensively managed temperate grasslands caused by a shift from energy- to water-limited climatic conditions have not yet been reported. In this study, we experimentally studied this shift by translocating undisturbed soil monoliths from an energy-limited site (Rollesbroich) to a water-limited site (Selhausen). The soil monoliths were contained in weighable lysimeters and monitored for their water and nitrogen balance in the period between 2012 and 2018. At the water-limited site (Selhausen), annual plant nitrogen uptake decreased due to water stress compared to the energy-limited site (Rollesbroich), while nitrogen uptake was higher at the beginning of the growing period. Possibly because of this lower plant uptake, the lysimeters at the water-limited site showed an increased inorganic nitrogen concentration in the soil solution, indicating a higher net mineralization rate. The N2O gas emissions and nitrogen leaching remained low at both sites. Our findings suggest that in the short term, fertilizer should consequently be applied early in the growing period to increase nitrogen uptake and decrease nitrogen losses. Moreover, a shift from energy-limited to water-limited conditions will have a limited effect on gaseous nitrogen emissions and nitrate concentrations in the groundwater in the grassland type of this study because higher nitrogen concentrations are (over-) compensated by lower leaching rates.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


Sign in / Sign up

Export Citation Format

Share Document