scholarly journals Anticancer Potency of Copper(I) Complexes Against a Range Cancer Cell Lines: A Review

2021 ◽  
Vol 26 (1) ◽  
pp. 128-140
Author(s):  
Narendra Kumar Singh ◽  
Paras Nath Yadav

The copper(I) complexes of N,N-diimine, N,O- and/or N, S-bidentate systems perform significant dose-dependent anticancer activity toward various cell lines viz. MCF-7, LNCap, PSN-1, A431, BxPC3, H157, A2780, HeLa, MDA-MB231, MGC-803 etc. The copper(I) complexes can cross the cellular plasmalemma that results in the accumulation of copper ion  in the cancer cells, exhibit significant anticancer effect and overcome the multidrug resistance because these can slightly induce the DNA cleavage as a result of limited generation of reactive oxygen species (ROS). Copper(I) complexes exhibit significantly higher broad-spectrum antiproliferation and cell apoptosis via mitochondrial pathway than that of their corresponding Cu(II), Co(II), Pd(II), and Ni(II) complexes. The copper(I) complexes inhibit the cancer cells not only via ROS generation but also via DNA interactions possibly by attacking the sugar-phosphate backbone of DNA due to their oxidative and partial dissociation behavior. Copper(II/I) complexes are also able to cleave DNA by hydrolytic pathway and induce caspase-dependent-mitochondrial-mediated cell apoptosis by ROS production or blocking the progression of cell cycles. In many cases, the modification in organic moiety and the placement of electronegative substituent near the metallic center of complexes have been found to enhance their anticancer potency in a significant manner. Thus copper(I) complexes may be used as the better anticancer drugs with multiple modes of action compared to the copper(II) complexes due to having oxidative behavior and generation of empty site on copper(I) ion during partial dissociation.

2017 ◽  
Vol 27 (7) ◽  
pp. 1306-1317
Author(s):  
Yen-Yun Wang ◽  
Pei-Wen Hsieh ◽  
Yuk-Kwan Chen ◽  
Stephen Chu-Sung Hu ◽  
Ya-Ling Hsu ◽  
...  

ObjectiveThe β-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of β-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a β-nitrostyrene derivative CYT-Rx20 (3′-hydroxy-4′-methoxy-β-methyl-β-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated.MethodsThe effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, β-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo.ResultsCYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers β-catenin and Twist.ConclusionsCYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.


2021 ◽  
Vol 11 (10) ◽  
pp. 1947-1954
Author(s):  
Yi Ye ◽  
Xucan Wang ◽  
Zhenqing Yang ◽  
Qian Xu ◽  
Bo Zhang

Background: Facet joint degeneration (FJD), which is also called facet joint syndrome (FJS), has become one of the most commonly seen etiological factors for lumbago. Cartilage lesion triggered by lumbar facet joint (LFJ) degeneration might be related to mitochondrial impairment, but the its underlying mechanism remains unclear. Materials and methods: The endplate chondrocytes were induced by hydrogen peroxide (H2O2) to mimic the pathological conditions of oxidative stress. Enzyme linked immunosorbent assay (ELISA) were used for the evaluation of reactive oxygen species (ROS). Adenosine-triphosphate (ATP) level was assessed using ATP detection, along with the detection the expression of cytochrome C in mitochondria (mito-cyt c) and in cell cytoplasm (cyto-cyt c) and cleaved caspase 3 by Western blot analysis. TUNEL assay was conducted for the measurement of cell apoptosis in endplate chondrocytes. Reverse transcription-polymerase chain reaction (RT-qPCR) was used to verify the expression of heat shock protein 22 (HSP22) and the transfection efficiency of HSP22 interference plasmid. Results: It was found that H2O2 promoted the mitochondrial dysfunction, ROS generation and cell apoptosis in endplate chondrocytes. Moreover, HSP22 was down-regulated in H2O2-induced endplate chondrocytes, and interference of HSP22 decreased the ROS production, increased the ATP level and promoted the cell apoptosis, resulting in the enhanced impairment of endplate chondrocytes. Additionally, mitochondrial ROS inhibitor (Mito-TEMPO) ameliorated the injury effects of HSP22 silencing in the H2O2-induced endplate chondrocytes. Conclusion: In conclusion, HSP22 inhibits oxidative stress-induced endplate chondrocyte apoptosis by regulating mitochondrial pathway, possibly providing novel guidance direction for the treatment of LFJ degeneration.


Metallomics ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 1480-1490 ◽  
Author(s):  
Zuandi Luo ◽  
Lianling Yu ◽  
Fang Yang ◽  
Zhennan Zhao ◽  
Bo Yu ◽  
...  

Ruthenium polypyridyl complexes inhibit cancer growth by targeting TrxR and promote the intracellular ROS generation, ultimately triggering mitochondria-mediated cell apoptosis.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Tarek Zaidieh ◽  
James R. Smith ◽  
Karen E. Ball ◽  
Qian An

Abstract Background Mitochondria are considered a primary intracellular site of reactive oxygen species (ROS) generation. Generally, cancer cells with mitochondrial genetic abnormalities (copy number change and mutations) have escalated ROS levels compared to normal cells. Since high levels of ROS can trigger apoptosis, treating cancer cells with low doses of mitochondria-targeting / ROS-stimulating agents may offer cancer-specific therapy. This study aimed to investigate how baseline ROS levels might influence cancer cells’ response to ROS-stimulating therapy. Methods Four cancer and one normal cell lines were treated with a conventional drug (cisplatin) and a mitochondria-targeting agent (dequalinium chloride hydrate) separately and jointly. Cell viability was assessed and drug combination synergisms were indicated by the combination index (CI). Mitochondrial DNA copy number (mtDNAcn), ROS and mitochondrial membrane potential (MMP) were measured, and the relative expression levels of the genes and proteins involved in ROS-mediated apoptosis pathways were also investigated. Results Our data showed a correlation between the baseline ROS level, mtDNAcn and drug sensitivity in the tested cells. Synergistic effect of both drugs was also observed with ROS being the key contributor in cell death. Conclusions Our findings suggest that mitochondria-targeting therapy could be more effective compared to conventional treatments. In addition, cancer cells with low levels of ROS may be more sensitive to the treatment, while cells with high levels of ROS may be more resistant. Doubtlessly, further studies employing a wider range of cell lines and in vivo experiments are needed to validate our results. However, this study provides an insight into understanding the influence of intracellular ROS on drug sensitivity, and may lead to the development of new therapeutic strategies to improve efficacy of anticancer therapy.


2020 ◽  
Vol 49 (47) ◽  
pp. 17173-17182
Author(s):  
Wan-Qiong Huang ◽  
Chuan-Xian Wang ◽  
Tao Liu ◽  
Zi-Xin Li ◽  
Chen Pan ◽  
...  

A structurally fine-tuned nitridoosmium(vi) complex induces HepG2 cell apoptosis through activation of the mitochondrial pathway and death receptor pathway, showing promising in vitro and in vivo anticancer activities.


2019 ◽  
Author(s):  
Zhiqing Huang ◽  
Eiji Kondoh ◽  
Zachary Visco ◽  
Tsukasa Baba ◽  
Noriomi Matsumura ◽  
...  

ABSTRACTObjectiveOvarian cancer cells often exist in vivo as multicellular spheroids. Spheroid formation in vitro has been used to enrich for cancer stem cell populations from primary tumors. Such spheroids exhibit drug resistance and slow proliferation, suggesting involvement in disease recurrence. Our objectives were to characterize cancer spheroid phenotypes, determine gene expression profiles associated with spheroid forming capacity and to evaluate the responsiveness of spheroids to commonly used and novel therapeutic agents.MethodsTumorigenic potential was assessed using anchorage independent growth assays in 24 cell lines. Spheroids from cell lines (N=12) and from primary cancers (N=8) were grown on non-adherent tissue culture plates in serum-free media. Cell proliferation was measured using MTT assays and Ki67 immunostaining. Affymetrix HT U133A gene expression data was used to identify differentially expressed genes based on spheroid forming capacity. Matched monolayers and spheroids (N=7 pairs) were tested for response to cisplatin, paclitaxel and 7-hydroxystaurosporine (UCN-01) while mitochondrial inhibition was performed using oligomycin. Xenograft tumors from intraperitoneal injection of CAOV2-GFP/LUC ovarian cancer cells into nude mice were treated with carboplatin to reduce tumor burden followed by secondary treatment with carboplatin, UCN-01, or Oltipraz. Tumor formation and response was monitored using live imaging.ResultsOf 12 cell lines with increased anchorage-independent growth, 8 also formed spheroids under serum-free spheroid culture conditions. Spheroids showed reduced proliferation (p<0.0001) and Ki67 immunostaining (8% versus 87%) relative to monolayer cells. Spheroid forming capacity was associated with increased mitochondrial pathway activity (p ≤ 0.001). The mitochondrial inhibitors, UCN-01 and Oligomycin, demonstrated effectiveness against spheroids, while spheroids were refractory to cisplatin and paclitaxel. By live in vivo imaging, ovarian cancer xenograft tumors were reduced after primary treatment with carboplatin. Continued treatment with carboplatin was accompanied by an increase in tumor signal while there was little or no increase in tumor signal observed with subsequent treatment with UCN-01 or Oltipraz.ConclusionsOur findings suggest that the mitochondrial pathway in spheroids may be an important therapeutic target in preventing disease recurrence.


2021 ◽  
Author(s):  
Portia P Raphela-Choma ◽  
Mthokozisi BC Simelane ◽  
Mpho S Choene

Abstract Background Natural compounds derived from various medicinal plants may activate several physiological pathways which can be valuable to diseases such as cancer. Isomukaadial acetate has previously been shown to possess antimalarial and anti-diabetic properties. The purpose of this study was to evaluate the antiproliferative effects of isomukaadial acetate on breast and ovarian cancer cell lines. Method Cell viability assays were conducted using AlamarBlue assay and xCELLigence system. Cell apoptosis and cell cycle arrest were determined and analyzed by flow cytometer. Effector caspase (3/7) activation was evaluated by caspase Glo®-3/7 reagent and gene expression was analyzed by Real-Time Polymerase Chain Reaction. Results The Alamar blue assay and xCELLigence showed that Iso-mukaadial acetate exhibited anti-proliferative effects on MDA-MB 231, RMG-1, and HEK 293 cell lines in a concentration-dependent manner. Iso-mukaadial acetate induced apoptosis in both cancer cell lines caused cell cycle arrest at the S phase (RMG-1) and early G2 phase (MDA-MB 231) and expressed caspase 3/7 activity in MDA-MB 231 and RMG-1 cells. BAX and p21 were upregulated in MDA-MB 231 and RMG-1 cells after treatment. Conclusion IMA significantly inhibited cancer growth and induced cell apoptosis with cell cycle modulation. IMA may be considered a promising candidate for the development of anticancer drugs either for its cytotoxic or cytostatic effect Furthermore, IMA requires to be further studied more to clearly understand its mechanism of action on cancer cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jing Zhou ◽  
Xiaowen Peng ◽  
Xuejiao Li ◽  
Xiaoyu Kong

In the current study, a Cu(II) coordination polymer (CP) has been created in success with the solvothermal reaction between an asymmetrical rigid N-heterocyclic carboxylatic acid (HL) and Cu(NO3)2·3H2O in the existence of 1,3-H2bdc, the second assistant ligand (in which 1,3-H2bdc is benzene-1,3-dicarboxylic acid and HL is 1-(4-carboxylphenyl)-3-(prazin-2-yl)-1H-1,2,4-triazole), and the chemical composition of this compound is [Cu2(L)2(1,3-bdc)(H2O)2]n (1). In the biological aspect, we screened the antiproliferation activity of the Cu(II) coordination polymer on five kinds of human cancer cell lines. IC50 and MTT assay results indicated that complex 1 had a spectral antiproliferative activity against liver cancer cells, peculiarly on human HepG2 liver cancer cells. From the data of Annexin V-FITC/PI assay and ROS detection, we can find that complex 1 exerts an antitumor effect by inducing ROS generation and cell apoptosis. Caspase-3 and caspase-9 activity detection revealed that activation of caspase-3 and caspase-9 plays vital roles in HepG2 cell apoptosis. These outcomes indicate that 1 is an excellent compound in treating cancer.


2019 ◽  
Author(s):  
Tarek Zaidieh ◽  
James Smith ◽  
Karen Ball ◽  
Qian An

Abstract Background Mitochondria are considered a primary intracellular site of reactive oxygen species (ROS) generation. Generally, cancer cells with mitochondrial genetic abnormalities (copy number change and mutations) have escalated ROS levels compared to normal cells. Since high levels of ROS can trigger apoptosis, treating cancer cells with low doses of mitochondria-targeting / ROS-stimulating agents may offer cancer-specific therapy. This study aimed to investigate how baseline ROS levels might influence cancer cells’ response to ROS-stimulating therapy. Methods Four cancer and one normal cell lines were treated with a conventional drug (cisplatin) and a mitochondria-targeting agent (dequalinium chloride hydrate) separately and jointly. Cell viability was assessed and drug combination synergisms were indicated by the combination index (CI). Mitochondrial DNA copy number (mtDNAcn), ROS and mitochondrial membrane potential (MMP) were measured, and the relative expression levels of the genes and proteins involved in ROS-mediated apoptosis pathways were also investigated. Results Our data showed a correlation between the baseline ROS level, mtDNAcn and drug sensitivity in the tested cells. Synergistic effect of both drugs was also observed with ROS being the key contributor in cell death. Conclusions Our findings suggest that mitochondria-targeting therapy could be more effective compared to conventional treatments. In addition, cancer cells with low levels of ROS may be more sensitive to the treatment, while cells with high levels of ROS may be more resistant. Doubtlessly, further studies employing a wider range of cell lines and in vivo experiments are needed to validate our results. However, this study provides an insight into understanding the influence of intracellular ROS on drug sensitivity, and may lead to the development of new therapeutic strategies to improve efficacy of anticancer therapy.


RSC Advances ◽  
2018 ◽  
Vol 8 (21) ◽  
pp. 11305-11315 ◽  
Author(s):  
Xiaobin Zhang ◽  
Chengli Dai ◽  
Yuanyuan You ◽  
Lizhen He ◽  
Tianfeng Chen

Herein we demonstrate that Jin Guanyin extracts shows antioxidative activity, thus inhibiting ROS generation, promoting mitochondrial fragmentations and caspase activations in cancer cells, finally leading cell apoptosis and cycle arrest.


Sign in / Sign up

Export Citation Format

Share Document