scholarly journals Equilibrium Sorption Studies of Basic Blue-9 Dye from Aqueous Medium Using Activated Carbon Produced from Water Hyacinth (Eichornia Crassipes)

2013 ◽  
Vol 29 ◽  
pp. 67-74 ◽  
Author(s):  
Timi Tarawou ◽  
D. Wankasi ◽  
Michael Horsfall Jnr

The study shows that water hyacinth could be used as novel raw material for the production of effective activated carbon for the adsorption (removal) of Basic Blue- 9 dye from aqueous solution. Optimum removal of 86% dye was obtained which decreased to 62% with an increase in concentration from 50 to 300mg/l, though sorption capacity was found to increase with an increase in concentration. Both Langmuir and Freundlich isotherms were suitable for describing the experimental data in this study with high regression coefficients (R2) of 0.9852 and 0.9905 respectively. The Langmuir maximum sorption capacity (qm) was found to be 421mg/g. It was further observed that the intensity of adsorption, n, was found to be 1.84 which shows that the sorption process was favourable. The equilibrium parameter, RL, value of 0.138 also shows that the adsorption of Basic Blue-9 dyes onto the activated carbon was favourable. The macropore and micropore diffusion constants show that the rate limiting step is the micropore diffusion stage since the micropore diffusion constant (Kid2) value of 0 is lower than the macropore diffusion constant (Kid) value of 0.2543, thus the rate of micropore diffusion is the slower step and the rate determining step. The study also showed that the sorption process was predominantly controlled by intra-particle diffusion, though film diffusion also played a significant role.DOI: http://dx.doi.org/10.3126/jncs.v29i0.9254Journal of Nepal Chemical Society Vol. 29, 2012 Page: 67-74 Uploaded date: 12/5/2013 

2019 ◽  
Vol 73 (4) ◽  
pp. 223-237
Author(s):  
Danijela Bojic ◽  
Milos Kostic ◽  
Miljana Radovic-Vucic ◽  
Nena Velinov ◽  
Slobodan Najdanovic ◽  
...  

Lagenaria vulgaris activated carbon (LVAC) was synthesized from Lagenaria vulgaris biomass by treatment with diluted H2SO4 followed by thermo-chemical carbonization and overheated steam activation process and used for removal of the herbicide 2,4-dichlo-rophenoxyacetic acid (2,4-D). Fourier transform infrared spectroscopy (FTIR) indicated that 2,4-D is adsorbed in micropores of the very porous LVAC (665 m2 g-1). LVAC showed high sorption capacity as compared to many previously used sorbents at optimal conditions: the stirring rate of 300 rpm, the sorbent dose of 1.0 g dm-3 and pH from 2 to 7. The experimental maximum sorption capacity of LVAC was 333.3 mg g-1. The pseudo-second-order model and Chrastil model described the 2,4-D sorption kinetics by LVAC. Thermodynamic studies have indicated that the sorption process was endothermic, spontaneous and physical in nature. LVAC was shown to be an ultrahighly efficient sorbent for removal of 2,4-D from groundwater, which could be also recycled and reused.


2012 ◽  
Vol 573-574 ◽  
pp. 150-154
Author(s):  
Yun Bo Zang ◽  
Nai Ying Wu

In this study, removal of copper ions from aqueous solutions by synthetic Mg-Al-HTlc was investigated as a function of contact time, EDTA and addition sequences at room temperature. It is found that HTlc could reduced copper ions concentration effectively. The kinetics closely fit pseudo-second order kinetics with necessary time 9 h to reach equilibrium. The sorption process followed langmuir model. The maximum sorption capacity calculated was found to be 39.4 mg/g. The presence of EDTA and addition sequences could affect sorption of Cu(II) onto HTlc.


2018 ◽  
Vol 78 (10) ◽  
pp. 2055-2063
Author(s):  
Asmaa Msaad ◽  
Mounir Belbahloul ◽  
Samir El Hajjaji ◽  
Abdeljalil Zouhri

Abstract In this work, the use of a novel low-cost adsorbent derived from Ziziphus lotus (ZL) and industrial carbon (IC) has been successfully applied to the removal of methylene blue (MB) from aqueous solutions. The efficiency of this material was studied through Lagergren pseudo-first-order and pseudo-second-order kinetic models. The process for the novel activated carbon and the IC were best represented by the pseudo-second-order rate model. Langmuir and Freundlich isotherms were used to describe the sorption equilibrium data. The Langmuir model turned out to be the most adequate and maximum capacities were measured to be 833.33 and 142.85 mg.g−1 for ZL activated carbon and IC from Sigma Aldrich, respectively. The thermodynamic study revealed that the sorption process is spontaneous and endothermic for the two adsorbents. To explain the effectiveness of MB removal, ZL activated carbon was characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, X-ray diffraction and Fourier transform infrared spectroscopy.


Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 404-410
Author(s):  
Y. Shi ◽  
W. Chen ◽  
H. Lin ◽  
Z. Gao ◽  
B. Yang ◽  
...  

Abstract In this study,90Sr was used as the test radionuclide to characterize the sorption kinetics and effects of initial 90Sr activity and remaining 90Sr in solid concentration were simulated for a near-surface repository. The study focused on the sorption characteristics of radionuclides in unsaturated groundwater environment (or vadose zone) is the important information for investigating the near-surface disposal of intermediate and low-level radioactive waste (ILLW). Moreover, the 90Sr sorption experiments reached equilibrium within 56 h, which fit to the first order sorption kinetic model, and the remaining 90Sr in mudrock samples showed obvious sorption equilibrium hysteresis, which fit to the second order sorption kinetic model. Before reaching the maximum sorption capacity, the sorption rate constant increases with 90Sr increasing; the distribution coefficient (Kd) of 56 h decreases with the remaining 90Sr decreasing. In addition, it showed that the slow sorption process dominated before the sorption reaches equilibrium. In fact, a reliable safety assessment methodology for on-going near-surface repository required a lot of the radionuclides parameters with local environment including the radionuclides sorption/desorption rate constant and maximum sorption capacity.


Author(s):  
Paula Bugajska ◽  
Urszula Filipkowska ◽  
Tomasz Jóźwiak ◽  
Małgorzata Kuczajowska-Zadrożna

The article presents the effectiveness of orthophosphate sorption from aqueous solutions depending on the deacetylation degree of chitosan flakes. The first stage of the research was to determine the pH value at which the sorption process was the most effective (from the pH range 2–11). In the second stage, research was carried out to determine the maximum sorption capacities of chitosan with deacetylation degrees of 75%, 85% and 90% in relation to PO43-. The highest effectiveness of orthophosphate removal on chitosan, regardless of its deacetylation degree, was obtained at pH 4. At pH 2 and 3, the chitosan flakes dissolved. This study showed that the sorption effectiveness of phosphorus compounds depends on the deacetylation degree of chitosan. Along with the increase in deacetylation degree, the sorption capacity of chitosan also increases in relation to orthophosphates. It is related to the higher number of amino groups in the structure of chitosan, which are responsible for the sorption of pollutants in the form of anions. The maximum sorption capacity of chitosan-DD = 75% in relation to biogen was 5.13 mg/g, chitosan-DD = 85% was 5.65 mg/g, and chitosan-DD = 90% was 5.91 mg/g. After 60 minutes, the desorption process had begun and was most likely caused by an increase in the pH of the solution. Due to chitosan's ability to neutralise the sample and the associated risk of desorption, the time of sorbent contact with sewage cannot be longer than 60 minutes.


2019 ◽  
Vol 107 (5) ◽  
pp. 415-422
Author(s):  
S. Pahan ◽  
S. Panja ◽  
D. Banerjee ◽  
P. S. Dhami ◽  
J. S. Yadav ◽  
...  

Abstract The manuscript deals with the sorption of Am(III) and Eu(III) from pH medium using chitosan functionalized with dendrimer like polyamidoamine (PAMAM) polymers up to third generation. The PAMAM polymers were introduced into chitosan by two step processes and were characterized by various instrumental techniques like FTIR, XRD, TG-DTA. The sorption process was highly pH dependent for both Am(III) and Eu(III) with increasing trend for higher pH of the solution. Kinetics of equilibration was found to be fast with equilibrium attained in 10 min for both the metal ions. Pseudo 2nd order kinetics mechanism was found to be followed for both Am(III) and Eu(III). The sorption process of Eu(III) was found to fit the Langmuir isotherm model with maximum sorption capacity of 6.01 mg/g. There was no effect on the generation of PAMAM Dendron on the efficiency, kinetics or sorption capacity for Am(III) as well as Eu(III). The synthesized different generation of PAMAM functionalized chitosan is a promising material for removal of actinides and lanthanides from waste water solution.


2014 ◽  
Vol 6 (1) ◽  
pp. 134-138 ◽  
Author(s):  
M. Jansi Rani ◽  
M. Murugan ◽  
P. Subramaniam ◽  
E. Subramanian

The sorption of diesel, lubricant and castor oils onto different parts (root, stem and leaf) of the dry biomass water hyacinth was studied at the laboratory scale. The parts of the aquapyte water hyacinth (Eichhornia Crassipes) were characterized by physico-chemical methods and the characteristics were used to elucidate the oil sorption process. Hydrophobicity, wettability (capillarity), buoyancy and sorption capacity of oils in the presence/absence of water were studied to evaluate the suitability of the sorbent for application. In all the three sorbents, theoil sorption capacity increases with the increase of oil film thickness. However of the three parts, the stem has a greater sorption capacity of 9.3, 7.8 and 11.08 g/g for the three oils such as diesel, lubricant and castor oils respectively, even though the root of water hyacinth showed a higher hydrophobicity and surface area. These sorption capacities are comparable with widely used commercial oil sorbent such as nonwoven polypropylene which has a sorption capacity in the range of 10-16 g/g.


2018 ◽  
Vol 44 ◽  
pp. 00088 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Magdalena Madeła ◽  
Magdalena Wrońska

The aim of this research was to determine the effect the ozonation and sonification processes for post-treatment of coke wastewaters using activated carbons. The tests were carried out in three systems ie. I-AC (activated carbon), II-O3+AC (ozonation + activated carbon) and III-US+AC (ultrasound + activated carbon). In the experiment were used a three types of activated carbons: WG-12, ROW 08 Supra and Picabiol. The sorption process was carried out in static conditions at contact for 24h time of the wastewater with activated carbons. Coke wastewater was oxidized through ozonation at a constant ozone dose of 10 mg/dm3. Sonication of coke wastewater was conducted at vibration amplitude was 61.5 μm, with sonication time of 8 min. Results of removing of COD were estimated on the base of sorption capacity and COD removal efficiency. The second system was the most effective (O3+AC) for carbons WG-12 and ROW 08 Supra, whereas in the case of carbon Picabiol, the best efficiency was found for system I (AC). The lowest efficiency of removal of COD from coke wastewater was the systems III (US+AC) for all three activated carbons.


2018 ◽  
Vol 26 (2(128)) ◽  
pp. 108-114 ◽  
Author(s):  
Anna Wołowicz ◽  
Monika Wawrzkiewicz ◽  
Zbigniew Hubicki

The aim of the study was to compare the removal efficiency of toxic heavy metal ions: chromium(VI), nickel(II) and copper(II) as well as metal-complex dyes from aqueous solution using Lewatite VPOC 1065 and AdsorbsiaTM As500. The point of zero charge (pHPZC) of both sorbents and the influence of the initial concentration on the sorption process of Ni(II), Cu(II), Cr(VI), C.I. Acid Red 183 (AR183), C.I. Reactive Blue 21 (RB21) and nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (NiPc-TSATSS) were studied to determine the maximum sorption capacity. Kinetic studies were also carried out for the most effective sorbent-sorbate systems. The concentration effect of both hydrochloric acid and auxiliaries on the removal yield was also taken into account. As was found, Lewatit VPOC 1065 can be successfully applied for the treatment of textile wastewaters containing metal complex dyes and heavy metal ions. The highest sorption capacity, qe = 816.1 mg/g, was found for C.I. Acid Red 183.


Author(s):  
Héctor Valdés ◽  
Manuel Sánchez-Polo ◽  
Claudio A. Zaror

AbstractThe influence of the variation of chemical surface properties of activated carbons on the sorption capacity of activated carbons used in hybrid heterogeneous ozonation systems is still under discussion. In this study, the effect of long exposure of activated carbon to ozone and its implication on the removal of emerging organic pollutants from waters is evaluated. A commercial activated carbon (Filtrasorb-400) is used here as a raw material. It is chemically modified by continuous ozone exposure. 2-hydroxybenzothiazole (OHBT) is chosen as a target organic contaminant, representative of emerging micro-pollutants. Results obtained here reveal that extensive exposition of activated carbon surface to ozone weakens adsorbate–adsorbent interactions. Highly exposed activated carbon to ozone increases the concentration of oxygen-containing acidic functional groups, leading to a higher concentration of surface electron-withdrawing groups such as carboxylic acid anhydrides and carboxylic acids and reducing the sorption capacity toward OHBT in the hybrid heterogeneous ozonation system. At pH conditions around the point of zero charge (pH


Sign in / Sign up

Export Citation Format

Share Document