scholarly journals Developments in the geological exploration of Nepal

2008 ◽  
Vol 38 ◽  
pp. 49-54
Author(s):  
Jovan Stocklin

Prior to 1950, only sporadic geological observations by a few visitors were made in Nepal. With the opening of the country to foreigners in 1950, Nepal soon came into the focus of interest in Himalayan geology. It was the time of the classical "descriptive geology" with mapping as the primary objective. Several excellent monographs and the first geological maps of different parts of the Nepal Himalaya were produced. The best results were obtained in the richly fossiliferous "Tibetan" sedimentary zone in the north, whereas descriptions of the Central Crystalline zone and of the thick, unfossiliferous metasediments of the Lesser Himalaya reflected mainly the widely differing interpretations and conflicting views of the investigators; nappe structure vs. block tectonics was the main issue. .. With the advent of plate tectonics in the late 1960s, the Himalaya became the "collided range". Microstructural, mineralogical and geochemical studies in the search for stress and heat effects of subduction and collision on structure, metamorphism and magmatism became dominant and in Nepal concentrated on the Main Central Thrust, which was treated in terms of post­ collisional continental subduction. With it went a shift of emphasis from field to laboratory work, from observation to interpretation, from mapping to modelling, from fact to theory. The last thirty years were characterised by the strengthening and diversification of geological institutions in Nepal with the creation of a National Seismological Centre, the beginning of petroleum exploration in the southern foreland of the Himalaya, an intensification and modernisation of classical geological surveying and a strong engagement in the application of geology for engineering and natural hazard assessment purposes.

2001 ◽  
Vol 25 ◽  
Author(s):  
Santa Man Rai

A multidisciplinary study was carried out in the Lesser Himalaya (LH), the Kathmandu Crystalline Nappe (KCN) and the Gosainkund Crystalline Nappe (GCN) in central Nepal Himalaya. Two principal deformations are recorded in both the crystalline nappes and the Lesser Himalaya: ductile, syn-MCTor syn-MT metamorphic deformation marked by microstructures (stretching lineation, S-C structures, and isoclinal folding) and post-MCT/or post-MT metamorphic deformation recorded by a major EW-directed Likhu Khola anticline and by NNE-SSW-directed folds. The Upper Lesser Himalayan rocks close to the Main Central Thrust (MCT) record syn-MCT metamorphic conditions at 750 MPa and 566 °C. The rocks of the KCN record P-T condition from 900 to 720 MPa and 700 to 484 °C, while the GCN rocks were equilibrated at upper amphibolite- to granulite-facies conditions from 890 to 583 MPa and 754 to 588 °C. The P-T conditions and field observations exhibit well-preserved inverted metamorphism between the Upper Lesser Himalaya and the Gosainkund Crystalline Nappe. The augen gneisses from the GCN yielding 486±9Ma U-Pb zircon age and the granites of similar age in the KCN bear similar petrographic and geochemical characteristics and suggest a similar magmatic origin although they belong to different tectonic units. The chemical analyses of the Proterozoic Ulleri augen gneiss of the LH and the granites of the KCN fall within the same compositional field, indicating a magmatic origin of these augen gneisses. 40Ar/39Ar datings on muscovite indicate cooling ages younging systematically from south to north: 22 to 14 Ma in the KCN, 16 to 5 Ma in the GCN, and 12 to 6 Ma in the LH. This systematic younging of muscovite ages does not have any correlation with the present elevation, lithology and tectonic unit and is interpreted as a result of the exhumation of the rock units on the Main Himalayan Thrust (MHT) ramp situated to the north of Kathmandu Valley. Both the KCN and the GCN record a late emplacement history, but the KCN was exhumed earlier than the GCN. The two crystalline nappes presently form a single tectonic block, and the combined uplift of the two nappes occurs on a ramp of a major decollement developed in the upper part of the Indian crust.


2020 ◽  
Vol 11 (3) ◽  
pp. 96-107
Author(s):  
Pavel HRONČEK ◽  
◽  
Karol WEIS ◽  
Vladimír ČECH

The primary objective of this paper is to present opportunities for creating virtual 3D models of defunct historical buildings, reconstructed on the basis of archival and field research, and the effective promotion and visualisation of such models through a thematic web application. The secondary objective is to increase the tourism potential and attractiveness of the various historical sites and the studied region. The comprehensive methodical processing of documents and the creation of 3D models of objects and other digital visualisation requires not only high-quality programmers and graphic artists, but especially scientists who create historically-relevant descriptive texts, real schemes, and historically acceptable models that can be computer-processed, visualised, and used as an effective tool for the development of tourism. Research and follow-up activities require an interdisciplinary approach, i.e. the cooperation of experts from various disciplines. The research processed in this study points out that even simple, now widely available modern means of communication, such as websites, can be effectively used for the promotion and publicity of this type of attraction. High-quality 3D models and visualisations of buildings and specific destinations, or cultural and technical monuments, can thus become available to tourists also outside museums. This paper introduces the opportunities of digital presentation of preserved, partially defunct and, especially, completely defunct historical buildings and sites that are often almost unknown to tourists. In many cases, only their shells or foundations remain. In terms of cultural heritage conservation and monument protection, these sites are often among the most important religious buildings from various historical periods. This study focuses on the Middle Ages and locations in Slovakia (former Hungary), and presents a methodology that is generally applicable for the research and visualisation of any similar cultural sites, and thus opening up their potential to tourists.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7522
Author(s):  
Dariusz Knez ◽  
Mohammad Ahmad Mahmoudi Zamani

From the 2000s onwards, unprecedented space missions have brought about a wealth of novel investigations on the different aspects of space geomechanics. Such aspects are related to the exploratory activities such as drilling, sampling, coring, water extraction, anchoring, etc. So far, a whole range of constitutive research projects on the plate tectonics, morphology, volcanic activities and volatile content of planetary bodies have been implemented. Furthermore, various laboratory experiments on extraterrestrial samples and their artificial terrestrial simulants are continually conducted to obtain the physical and mechanical properties of the corresponding specimens. Today, with the space boom being steered by diverse space agencies, the incorporation of geomechanics into space exploration appreciably appears much needed. The primary objective of this article is to collate and integrate the up-to-date investigations related to the geomechanical applications in space technologies. Emphasis is given to the new and future applications such as planetary drilling and water extraction. The main impetus is to provide a comprehensive reference for geoscience scientists and astronauts to quickly become acquainted with the cutting-edge advancements in the area of space geomechanics. Moreover, this research study also elaborates on the operational constraints in space geomechanics which necessitate further scientific investigations.


2003 ◽  
Vol 28 ◽  
Author(s):  
B. N. Upreti ◽  
S. M. Rai ◽  
H. Sakai ◽  
D. R. Koirala ◽  
Y. Takigam

The Lesser Himalayan Sequence of the Taplejung Window in the far eastern Nepal Himalaya can be divided into Taplejung Formation, Mitlung Augen Gneiss and Linkhim Schist (from bottom to top respectively). The window is a large domal shaped anticline plunging to the east. Two-mica granite bodies (Amarpur Granite, Kabeli Khola Granite and Tamor River Granite) have intruded the metasediments of Taplejung Formation. The granite bodies are discordant to subconcordant in relation to the country rocks. Quartz, alkali feldspar, plagioclase, muscovite, biotite and tourmaline are the main constituent minerals of the granite. Generally, the core of granite bodies is undeformed, whereas the marginal part is gneissfied with S-C mylonitic texture showing the top to south sense of shear. This sense of shear is related to the movement along the Main Central Thrust (MCT). All the samples from the granitic bodies fall under the granite field in the normative quartz-alkali feldspar-plagioclase (QAP) triangular diagram. The mineral composition shows that the granite is peraluminous in nature. The Kabeli Khola Granite has yielded a 40Ar/ 39Ar muscovite age older than 1.6 Ga indicating its magmatic age. The granites of the study area can also be correlated with the 1.8 Ga Ulleri type augen gneiss of central Nepal.


2003 ◽  
Vol 28 ◽  
Author(s):  
Naresh Kazi Tamrakar ◽  
Shuichiro Yokota ◽  
Suresh Das Shrestha

Middle Miocene to early Pleistocene sedimentary sequence deposited in the foreland basin of the Himalaya is represented by the Siwalik Group. In the present study area the Siwalik Group extends in a NW-SE direction and well-exposed. Forty­four sandstone samples were studied for texture, fabric and composition in order to assess their petrographic properties and variation trends of these properties in stratigraphic levels. Sandstones were classified into sublitharenite, subarkose, lithic arenite, arkosic arenite and feldspathic graywacke and further thirteen sub-clans. Mean grain size (M) and Trask sorting coefficient (So) increase up-section. Recalculated quartz, matrix, modified maturity index (MMI), total cement (Ct), cement versus matrix index (CMI) and ratio of strong cement over total cement ((Cfc/Cs)/Ct) also increase, whilst packing proximity (PP), packing density (PD) and consolidation factor (Pcc) decrease up-section showing distinct trends, and therefore, these properties are promising in recognizing the older sandstones from the younger ones.


2003 ◽  
Vol 28 ◽  
Author(s):  
Santa Man Rai

Boron content in the rocks of central Nepal Himalaya depends upon the lithology and the grade of metamorphism. The concentration of boron is abundant (up to 322 ppm) in the metasedimentary rocks of the Lesser Himalaya. There seems to be a rather good correlation between the boron content in the rocks and the grade of metamorphism. The boron content progressively increases from chlorite to garnet isograds, then it systematically decreases in the staurolite±kyanite, kyanite and sillimanite isograds, respectively. This trend may be related to the inverse metamorphism associated with movement along the Main Central Thrust. The Manaslu leucogranite contains very high amount of boron (950 ppm). The enrichment of boron in this rock may be due to the release of boron from the Lesser Himalayan rocks during the partial melting of the Higher Himalayan Crystallines (Tibetan Slab) as a result of the movement along the MCT. Tourmaline from the Manaslu Granite is also highly rich in boron (8460 ppm).


1981 ◽  
Vol 1 (1) ◽  
Author(s):  
A. H. G. Mitchell

Granitic rocks occupying eight distinct tectonic settings can be recognized in the Himalayas and   Transhimalayas.  In the Lower Himalayas geographical belt a few plutons of two-mica granite intrude the lowest unit of the Nawakot Complex or Midland Group. More extensive are sheet- like lies of augen gneiss intrusive within a possibly thrust bounded succession carbonates and graphitic schists beneath the Main Central Thrust to the north. The most abundant granites in the Lower Himalayas are the two- mica cordierite- bearing granite within klippen; minor tin and tungsten mineralization is associated with these plutons, which are of late Cambrian age. Within the Higher Himalayas above the Main Central Thrust, the ‘Central Crystallines’ or Central Gneisses include pegmatites and pegmatitic granites intrusive into gneisses of probable early Proterozoic age; these have same potential for ruby, sapphire, aquamarine and possibly spodumene. Further north within the Higher Himalayan succession a southern belt of anatectic two- mica granites and leucogranites of mid-Tertiary age is favorable for tin, tungsten and uranium mineralization; a northern belt of granites or gneisses is of uncertain age and origin. North of the Indus Suture in the Transhimalayas extensive batholiths of hornblende granodiorite representing the root zone of a late Mesozoic to early Eocene volcanic arc are associated with porphyry copper deposits. Further north in southern Tibet the tectonic, setting for reported granitic bodies of  Tertiary  age  is  uncertain; their location suggests that they could be favorable host rocks for tin, uranium and porphyry molybdenum mineralization.


Jurnal MIPA ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 58 ◽  
Author(s):  
Farid Mufti ◽  
As'ari .

Penelitian ini mengkaji lebih dalam kondisi angin dan kelembapan udara pada saat musim hujan dan musim kemarau di Manado dengan menggunakan data di lapisan permukaan dan data udara atas dari Stasiun Meteorologi Sam Ratulangi Manado. Tujuan utama dari penelitian ini adalah mendapatkan hubungan antara kondisi angin dan kelembapan lapisan atas terhadap lapisan permukaan, sehingga dapat memprakirakan kondisi angin dan kelembapan lapisan permukaan dengan berdasarkan keadaan lapisan atas. Metode yang digunakan adalah mengkomponenkan angin dalam arah utara-selatan dan timur-barat, selanjutnya mencari keterkaitan dengan menggunakan teknik korelasi. Hasil penelitian ini menunjukkan pada saat musim hujan angin pada lapisan 1500 m dan angin di lapisan permukaan memiliki arah yang sama dan saling menguatkan untuk komponen timur-barat (zonal) dengan koefisien korelasi r=0,56, sedangkan pada saat musim kemarau angin pada lapisan 1500 m dan angin di lapisan permukaan memiliki arah yang sama dan saling menguatkan untuk komponen utara-selatan (meridional) dengan koefisien korelasi r=0,45. Keterkaitan yang cukup kuat antara angin dengan kelembapan terjadi pada komponen V (meridional) yaitu, pada saat musim hujan, semakin besar kecepatan angin komponen negatif (utara) semakin besar pula kelembapan udara di lapisan permukaan, dengan koefisien korelasi benilai positif r=0.40. Pada saat musim kemarau, semakin besar kecepatan angin komponen positif (selatan) semakin kecil kelembapan udara di lapisan permukaan, dengan koefisien korelasi bernilai negatif r=— 0,48.This study examined the wind and humidity condition in the rainy season and dry season in Manado by using the data in surface layer and upper air data from the Sam Ratulangi Meteorological Station. The primary objective of this study was to find the relationship between wind condition and upper layer humidity to surface layer, using correlation technique, in order to predict wind condition and humidity of the surface layer based on the condition of the upper layer. The results showed that, during the rainy season, the wind at layer 1500 m and surface layer had the same direction and mutually reinforced for the east-west component (zonal) with correlation coefficient r=0.56, whereas during the dry season, wind at layer 1500 m and at surface layer had the same direction and mutually reinforced for the north-south component (meridional) with correlation coefficient r=0.45. A relationship between wind and humidity was found at V component (meridional), which was, at rainy season, the higher the wind speed of negative component (north) the higher the humidity at surface layer with positive correlation coefficient r=0.40. At dry season, the higher the wind speed of positive component (south), the lower the humidity at the surface layer, with negative correlation coefficient r=—0.48.


2021 ◽  
Vol 15 (3) ◽  
pp. 339-349
Author(s):  
Fatemeh Baseri ◽  
Arash Gourabjeri Pour ◽  
Nima Nezafati

Chah Mura mining area in Semnan province is located 30 km southwest of Shahroud and 20 km north of Torud village with an area of 35 km2 and includes a part of 1:250,000 Torud plate. Structurally, this area is located in the northeastern part of Central Iran and in the center of the volcanic-intrusive arc of Torud-Chah Shirin. Rock units of the area are volcanic and pyroclastic, depending on the Eocene age. Exposed assemblages in the Chah Mura area, based on field and laboratory studies, can be divided into basalt, andesite, andesite-basalt, trachyandesite, trachyandesibasalt and small outcrops of pyroclastic units in the form of agglomerates and sediments of sandstone and conglomerate. Volcanic rocks are influenced by sub-volcanic masses younger than Eocene with an intermediate to basic composition, and their predominant textures are granular, porphyroid with microcrystalline to microintragranular background. Finally, the units are cut by dikes. In this area, mineralization is mainly in the control of sub-faults and subvolcanic massifs. Mineralization is in the form of vein-veinlet, filling empty and scattered space in the oxidation-supergen stage. Mineral sequences include pyrite, chalcopyrite, chalcocite, digenite and covellite, cuprite, tenorite, natural copper, malachite, azurite, and iron oxides and hydroxides. Geochemical studies indicate that copper does not correlate well with any of the base metals and depositing elements. Copper shows only a relative correlation with silver. Micrometric studies of fluid inclusions in samples from this area indicate dilution as a result of mixing hydrothermal solutions with atmospheric fluids in formation of this reserve.


1975 ◽  
Vol 12 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Jackson M. Barton Jr. ◽  
Erika S. Barton

The Snyder breccia is composed of angular to subrounded xenoliths of migmatites and amphibolites in a very fine grained matrix. It is apparently intrusive into the metasediments of the Snyder Group exposed at Snyder Bay, Labrador. The Snyder Group unconformably overlies a migmatitic and amphibolitic basement complex and is intruded by the Kiglapait layered intrusion. K–Ar ages indicate that the basement complex is Archean in age (> 2600 m.y. old) and that the Kiglapait layered intrusion was emplaced prior to 1280 m.y. ago. Major and trace element analyses of the matrix of the Snyder breccia indicate that while it was originally of tonalitic composition, later it locally underwent alteration characterized by loss of sodium and strontium and gain of potassium, rubidium and barium. Rb–Sr isotopic analyses show that this alteration occurred about 1842 m.y. ago, most probably contemporaneously with emplacement of the breccia. The Snyder Group thus was deposited sometime between 2600 and 1842 m.y. ago and may be correlative with other Aphebian successions preserved on the North Atlantic Archean craton.


Sign in / Sign up

Export Citation Format

Share Document