scholarly journals Substitution of chemical fertilizer nitrogen through Rhizobium inoculation technology

Our Nature ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 43-47
Author(s):  
Som Prasad Paudyal ◽  
V.N.P. Gupta

Nitrogen is one of the most essential elements for plants growth and development. Urea is commonly used as a substitute for chemical nitrogen. Rhizobium inoculation technology for legume crop was evaluated in a number of field experiments comparing with 80kg urea per hectare application. The inoculation and urea application trial showed almost similar biomass accumulation, nodule number and nodule dry weight compared to un-inoculated control. The symbiotic effectiveness with inoculated and urea application showed similar results. The inoculant strains isolated locally from Mucuna pruriens (velvet bean) were found suitable for inoculants production. The bio-technology of inoculation can be a promising and cheap alternative of urea for the legume crops.

2011 ◽  
Vol 39 (2) ◽  
pp. 196 ◽  
Author(s):  
Nurdilek GULMEZOGLU ◽  
Nihal KAYAN

This research aimed to determine the effect of different levels of nitrogen (N) on the growth, yield and the N accumulation of lentil plants grown under rain-fed conditions. The two-year field experiments with lentil were arranged in a randomised complete block design. Nitrogen was applied at four rates (0, 20, 40 and 60 kg ha-1) and all of the plots received half of the N rates before sowing in October and the remaining N rate in spring. The plants were harvested in the following stages: the first multifoliate leaf unfolding at the fifth node (V5) full seed or seed on nodes 10-13 that fill pod cavities (R6) and maturity (R8). The dry weight and N concentration of the shoot (leaf+stem), pod wall, and seed were then measured. It has been found that N application significantly affected the lentil characteristics. The maximum biomass accumulation and N accumulation were obtained at R6, and the N fertiliser had a positive effect on the seed weight and N accumulation. It can be suggest that 20 kg N ha-1 will increase the per-plant dry matter and N accumulation of the seeds under rain-fed conditions.


2017 ◽  
Vol 6 (4) ◽  
pp. 124
Author(s):  
Mutondwa M. Phophi ◽  
Paramu L. Mafongoya ◽  
Alfred O. Odindo ◽  
Lembe S. Magwaza

The use of herbicides amongst smallholder farmers is minimal because herbicides are expensive and they require specialized application equipments. Weeds are problematic in conservation agriculture where herbicides are expensive for smallholder farmers. The use of cover crops can help to suppress weed growth and development by creating an environment which is not suitable for weeds survival. Cowpea (Vigna unguiculata (L.) Walp) dolichos lablab (Lablab purpureus L.) and velvet bean (Mucuna pruriens (L.) DC) were evaluated for biomass accumulation and weed suppression under conservation agriculture system in two contrasting experimental sites: Ukulinga and Bergville in KwaZulu-Natal. Bare plot and herbicide treatments served as controls. Treatments were laid in a randomized complete block design, replicated three times. Mucuna pruriens (L.) DC had the highest biomass accumulation in both sites Bergville (0.72 t/ha) and Ukulinga (1.59 t/ha). Cowpea had the lowest biomass accumulation in Bergville (0.59 t/ha) and lablab was the lowest in Ukulinga (0.88 t/ha). Lablab was effective in suppressing weed biomass in Bergville (P < 0.05). Cowpea performed best in suppressing weed biomass in Ukulinga (P < 0.05). The results suggest that cowpea and lablab can be effective for weed suppression and therefore can be recommended for use in conservation agricultural systems.


Author(s):  
Judy Mwende Wambua ◽  
Shadrack Ngene ◽  
Nicholas K. Korir ◽  
Winnie Ntinyari ◽  
Joseph P. Gweyi-Onyango

Water scarcity of fresh water in Sub-Saharan has led to utilization of the wastewater in home gardening and also in commercial production of vegetables. Wastewater is associated with various substances including nutrients and heavy metals hence it is pertinent to evaluate its effects on growth and yield of vegetables. An experiment was conducted to evaluate the effect of waste water released from the municipal council on the biomass accumulation in African leafy vegetables. Field experiments were carried out in two seasons and one greenhouse experiment. The field trial was laid out in a Randomized Complete Block Design (RCBD) and in the greenhouse the treatments were arranged in Complete Randomized Design (RCD) replicated three times. Four leafy vegetables were the treatments replicated three times. The vegetables were irrigated with waste water. Plant samples were collected at 6 WAP and 12 WAP, partitioned and dried in an oven and later weighed using electronic weighing balance. The findings revealed differences in biomass accumulation into various organs. Black nightshade depicted the highest leaf dry matter in the greenhouse at both 6 weeks after plant (WAP) and 12 WAP (24.62 g and 81.12 g respectively). Cowpea showed the highest increment (7 folds) in leaf weight between 6 to 12 WAP as compared to was paltry 3.6 folds. The highest stem dry weight was obtained in the amaranth species at 6 WAP and 12 WAP both in the greenhouse; recording 32.59 g and 90.12 g respectively. A similar trend was noted in root dry weight and root: shoot ratio. Cowpea had the least biomass accumulation potential across all the parameters in both seasons and in the greenhouse. The increased biomass growth is an indication sufficient availability of nutrient that promoted vibrant plant growth and also less toxicity from the heavy metals. Therefore, waste water can be put into use to enhance improved productivity of African leafy vegetables.


2015 ◽  
Vol 43 (2) ◽  
pp. 554-560 ◽  
Author(s):  
Olivera STAJKOVIC-SRBINOVIC ◽  
Dušica DELIC ◽  
Nataša RASULIC ◽  
Dragan CAKMAK ◽  
Djordje KUZMANOVIC ◽  
...  

In the present study the effects of Rhizobium inoculation and lime application on the mineral composition (N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, B) of red clover (Trifolium pratense L.), in very acid soil were evaluated. Inoculation with Rhizobium leguminosarum bv. trifolii significantly increased shoot dry weight (SDW) of red clover plants (three times greater), as well as N, Mg, Fe, Mn and Cu contents in plants compared to the control. Application of lime and Rhizobium together, depending on the lime rate (3, 6 or 9 t ha-1 of lime) and the cut, increased SDW significantly, but decreased the contents of N, P, K, Mg, Mn, Zn and B in plants. Regardless of the changes, in all treatments in both cuts, contents of N, K, Ca, Mg, Mn and Zn in plants were among sufficiency levels (Mg content was elevated in the second cut), while Fe content was mainly high, as well as Cu (in the second cut). Contents of P and B in plants were somewhat lower than sufficiency levels, but above critical level. Therefore, red clover can be grown with satisfactory yield and mineral composition in acid soil with Rhizobium inoculation only, but the application of P and B fertilization is desirable.


2021 ◽  
Vol 4 (2) ◽  
pp. 1021-1033
Author(s):  
Nguyen Thi Loan ◽  
Tran Thi My Can

To study the effects of cover methods and nitrogen (N) levels on the growth and yield components of tomato Cv. Pear F1, field experiments with a 4x3 factorial design were conducted in the 2019 spring and winter seasons using a randomized complete block design with three replications. The cover methods included four treatments: bare soil (BS), black plastic mulch (BPM), transparent polypropylene row cover (RC), and a combination of BPM and RC (BPMRC) with the RC removed approximately 30 days after transplanting. Nitrogen (N) was applied at three levels (150, 180, and 210 kg N ha-1). Using BPM and RC generally led to an increased air temperature, air humidity, soil moisture, and soil temperature compared to the BS treatment. Higher N rates (180 and 210 kg N ha-1) did not result  in different tomato fruit sizes and fruit weights but positively increased fruit yield and quality (Brix values and fruit dry weight) as compared to the 150 kg N ha-1 addition. The cover methods positively affected the yield components and fruit yield of tomato as well as the fruit characteristics compared to the BS treatment. Using cover materials (BPM and RC) combined with a higher N application significantly increased the yield attributes and fruit yield. The highest fruit yield was achieved under the mulching treatment by black plastic (BPM treatment) combined with a 210 kg N ha-1 application, resulting in 50.90 tons ha-1 in the spring and 58.27 tons ha-1 in the winter.


2008 ◽  
Vol 6 (2) ◽  
pp. 36-44
Author(s):  
DIAN SRI PRAMITA ◽  
SRIiii HANDAJANI ◽  
DIAN RACHMAWANTI

Pramita DS, Handajani S, Rachmawanti D. 2008. The effect of heating technique to phytic acid content and antioxidant activity of velvet bean (Mucuna pruriens), butter bean (Phaseolus lunatus) and jack bean (Canavalia ensiformis). Biofarmasi 6: 36-44. Koro is a kind of local bean which has many varieties. The nutrition of koro is not different with soy, especially carbohydrate and protein which high enough, and has a low-fat content. However, koro also contains some harmful compounds, HCN which poisoned and phytic acid which an antinutritional compound. Besides as antinutritional compound, phytic acid has a positive role, i.e. as an antioxidant. Besides phytic acid, legume also contains the compounds of phenol and vitamin E that have antioxidant activity. The aims of this research were to determine the contents of phytic acid and antioxidant activity, and to determine the effect of heating technique on phytic acid and antioxidant activity of velvet bean, butter bean, and jack bean. The materials used were velvet bean, butter bean and jack bean obtained from Batuwarno, Wonogiri, Central Java. This research used a Completely Randomized Design (CRD) with five kinds of treatment, each treatment consisted of three replications. The treatments given were soaking by 3 days (P1), steaming (P2), boiling (P3) and pressure cooker (P4), which compared to a raw bean without heating treatment (P0). The investigated factors were phytic acid and antioxidant activity (DPPH Radical Scavenging Ability method). The results of this research showed the phytic acid content of velvet bean, butter bean and jack bean from the treatment of P0, P1, P2, P3 and P4 were degraded. The phytic acid of velvet bean of P0, P1, P2, P3 and P4 treatment were 10.87, 8.94, 4.56 and 1.72 and 1.46 mg/db, respectively; on butter bean were 11.78, 8.75, 4.77, 1.73 and 1.61 mg/db, respectively; while on jack bean were 9.04, 1.99, 1.39, 1.42 and 1.21 mg/db. The result of variance analysis showed the phytic acid content was significantly different (p<0.05). Antioxidant activity showed the increase from P0 to P1, then the degradation process at P2, P3, and P4. Antioxidant activity at velvet bean were 74.10%, 86.49%, 84.73%, 83.59% and 79.51%, respectively; at butter bean were 4.5%, 7.19%, 6.07%, 6.30% and 6.28%, respectively; at jack bean were 14.64%, 8.55%, 5.84%, 5.17% and 3.58%. The result of variance analysis showed antioxidant activity at velvet bean and jack bean was significant, while at butter bean for P1, P2, P3, and P4 were not significant. The conclusion that could be taken away from this research were heating techniques had an effect on the degradation of phytic acid at all kind of bean used, and also had an effect on the antioxidant activity at velvet bean and jack bean.


2000 ◽  
Vol 51 (6) ◽  
pp. 701 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

We studied the adaptation of narrow-leafed lupin (Lupinus angustifolius) and yellow lupin (L. luteus) to waterlogging because yellow lupin may have potential as a new legume crop for coarse-textured, acidic, waterlogging-prone areas in Western Australia. In a controlled environment, plants were waterlogged for 14 days at 28 or 56 days after sowing (DAS). Plants were more sensitive when waterlogged from 56 to 70 DAS than from 28 to 42 DAS, root growth was more sensitive than shoot growth, and leaf expansion was more sensitive than leaf dry weight accumulation. Waterlogging reduced the growth of narrow-leafed lupin (60–81%) more than that of yellow lupin (25–56%) and the response was more pronounced 2 weeks after waterlogging ceased than at the end of waterlogging. Waterlogging arrested net root growth in narrow-leafed lupin but not in yellow lupin, so that after 2 weeks of recovery the root dry weight of yellow lupin was the same as that of the control plants but in narrow-leafed lupin it was 62% less than the corresponding control plants. Both species produced equal amounts of hypocotyl root when waterlogged from 28 to 42 DAS but yellow lupin produced much greater amounts than narrow-leafed lupin when waterlogged from 56 to 70 DAS.


1994 ◽  
Vol 74 (4) ◽  
pp. 693-697 ◽  
Author(s):  
J. T. O'Donovan ◽  
G. M. Jeffers ◽  
M. P. Sharma ◽  
D. Maurice

A chickweed population (R) from a farm near Stony Plain, Alberta, was more resistant to chlorsulfuron than a population (S) collected near Vegreville, Alberta. In greenhouse experiments, the S population was controlled completely by chlorsulfuron applied at 5 g ha−1, whereas 22 g ha−1 was required to reduce dry weight of the R population by 50%. Experiments conducted in a germinator indicated that percentage germination of the R population was higher than that of the S population up to ~ 60 h. Growth analyses in the greenhouse indicated that leaf number, leaf area, shoot dry weight, days to flowering, flower number, seed weight and relative yields differed little between the two populations. In field experiments, control of the R population was poor with the sulfonylurea herbicides, chlorsulfuron, metsulfuron methyl, triasulfuron, amidosulfuron and thifensulfuron. Good to excellent control was obtained with cyanazine/MCPA, linuron, metribuzin, mecoprop, bentazon, metribuzin + MCPA, linuron + MCPA, and mecoprop + bentazon. Key words: Sulfonylurea herbicides, chlorsulfuron, herbicide resistance, relative competitiveness


2006 ◽  
Vol 61 (9-10) ◽  
pp. 619-624 ◽  
Author(s):  
Xinkun Wang ◽  
Yinghua Huang ◽  
Andrew J. Mort ◽  
Yuhong Zeng ◽  
Charles G. Tauer ◽  
...  

AbstractNeedles from 17 different Taxus x media cultivars, belonging to 4 groups showing different growth characteristics, were analyzed using high performance liquid chromatography for their content of 10-deacetylbaccatin III, baccatin III, cephalomannine and paclitaxel (Taxol®). The 4 Taxus x media cultivar groups were: 1.) medium to fast growing and upright form; 2.) slow growing and upright form; 3.) fast growing and spreading form; and 4.) slow growing and spreading form. The purpose of this study was to identify yew cultivars of fast growth rate, upright growth and high taxane content in their needles. The highest content of paclitaxel was found in ‘Coleana’ of group 1 (378 μg/g of the extracted dry weight). Three cultivars in group 1, ‘Coleana’, ‘Stovekenii’ and ‘Hicksii’, make good candidates for taxane extraction because of their high paclitaxel and 10-deacetylbaccatin III content, fast biomass accumulation and upright growing form. They are also good starting materials to develop alternative methods for the production of paclitaxel and its analogous compounds through modern biotechnology approaches.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 354-363 ◽  
Author(s):  
Darren C. Barker ◽  
Stevan Z. Knezevic ◽  
Alex R. Martin ◽  
Daniel T. Walters ◽  
John L. Lindquist

Weeds that respond more to nitrogen fertilizer than crops may be more competitive under high nitrogen (N) conditions. Therefore, understanding the effects of nitrogen on crop and weed growth and competition is critical. Field experiments were conducted at two locations in 1999 and 2000 to determine the influence of varying levels of N addition on corn and velvetleaf height, leaf area, biomass accumulation, and yield. Nitrogen addition increased corn and velvetleaf height by a maximum of 15 and 68%, respectively. N addition increased corn and velvetleaf maximum leaf area index (LAI) by up to 51 and 90%. Corn and velvetleaf maximum biomass increased by up to 68 and 89% with N addition. Competition from corn had the greatest effect on velvetleaf growth, reducing its biomass by up to 90% compared with monoculture velvetleaf. Corn response to N addition was less than that of velvetleaf, indicating that velvetleaf may be most competitive at high levels of nitrogen and least competitive when nitrogen levels are low. Corn yield declined with increasing velvetleaf interference at all levels of N addition. However, corn yield loss due to velvetleaf interference was similar across N treatments except in one site–year, where yield loss increased with increasing N addition. Corn yield loss due to velvetleaf interference may increase with increasing N supply when velvetleaf emergence and early season growth are similar to that of corn.


Sign in / Sign up

Export Citation Format

Share Document