scholarly journals Influence of ingredients on the properties of the flame retardant compound based on polyethylene

2021 ◽  
Vol 63 (11) ◽  
pp. 66-69
Author(s):  
Vu Thang Tran ◽  
◽  
Thi Phuong Hoang ◽  
Ngo Vu Duong ◽  
Thi Phuong Hong Dao ◽  
...  

In this paper, the effects of a flame retardant system combining ATH/MPP (aluminum hydroxide/melamine phosphate) and the other additives such as zinc stearate (ZnSt) on some properties of flame retardant PE compound based on LDPE were studied. The total flame retardant content was 35% by weight. Mechanical properties (tensile at break, elongation at break), thermal stability, and fire resistance were determined by the respective methods ASTM D638, thermogravimetric analysis (TGA), scanning electron microscope (SEM), and UL-94 test. The obtained results showed that using the combination of ATH/MPP has increased the fire resistance and thermal stability of the PE compound. The sample CT7 (15%ATH/20%MPP/2%ZnSt) achieved the best fire resistance. The mechanical properties increased slightly when increasing the content of MPP and reached the maximum for samples containing only MPP. The SEM micrographs showed that the addition of zinc stearate improved the dispersion of ATH and MPP in the PE matrix. The effect of flame retardant additives and zinc stearate on the melt index value of the PE compound was also surveyed.

2021 ◽  
Vol 72 (3) ◽  
pp. 245-254
Author(s):  
Bita Moezzipour ◽  
Aida Moezzipour

Today, recycling is becoming increasingly important. In recycling process, the product performance should also be considered. In this study, manufacturing insulation fiberboard, as a practical wood product from recycled fibers, was investigated. For this purpose, two types of waste (MDF wastes and waste paper) were recycled to fibers and used for producing insulation fiberboards. The target fiberboard density was 0.3 g/cm3. The ratio of waste paper to MDF waste recycled fibers (WP/RF) was considered at two levels of 70/30 and 50/50. Polyvinyl acetate adhesive was used as a variable in the board manufacturing process. The mechanical properties, dimensional stability, thermal conductivity, and fire resistance of the boards were evaluated. Besides, the thermal stability of fiberboards was studied using thermal analysis including thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results showed that the insulation fiberboards had admissible mechanical properties and dimensional stability. The manufactured boards displayed low thermal conductivity, which proved to be well competitive with other insulation materials. The fiberboards manufactured with PVAc adhesive and WP/RF ratio of 50/50 had higher fire resistance compared to other treatments. Additionally, results of thermal analysis showed that the use of PVAc adhesive and WP/RF ratio of 50/50 leads to improved thermal stability. Overall, the recycled fibers from MDF and paper wastes appear to be appropriate raw materials for manufacturing thermal insulation panels, and use of PVAc adhesive can significantly improve thermal and practical properties of insulation fiberboards.


2019 ◽  
Vol 253 ◽  
pp. 02005
Author(s):  
Daniel Gere ◽  
Tibor Czigany

Nowadays, PLA is increasingly used as a packaging material, therefore it may appear in the petrol-based polymer waste stream. However, with the today’s mechanical recycling technologies PLA and PET bottles cannot be easily or cheaply separated. Therefore, our goal was to investigate the mechanical, morphological and thermal properties of different PET and PLA compounds in a wide range of compositions. We made different compounds from poly(ethylene-terephthalate) (PET) and poly(lactic acid) (PLA) by extrusion, and injection molded specimens from the compounds. We investigated the mechanical properties and the phase morphology of the samples and the thermal stability of the regranulates. PET and PLA are thermodynamically immiscible, therefore we observed a typical island-sea type morphology in SEM micrographs. When PLA was added, the mechanical properties (tensile strength, modulus, elongation at break and impact strength) changed significantly. The Young’s modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. The TGA results indicated that the incorporation of PLA decreased the thermal stability of the PET/PLA blends.


2015 ◽  
Vol 37 ◽  
pp. 15 ◽  
Author(s):  
Azin Paydayesh ◽  
Ahmad Aref Azar ◽  
Azam Jalali Arani

In this work, Poly Lactic Acid/Poly methyl Methacrylate (PLA/PMMA) blends in various compositions prepared and morphology and properties of these blends was investigated. Moreover, the effect of adding different amounts of Graphene Nanoplatelets (GNP) on the morphology of the blends (by SEM), the interaction of nanopalates with polymer phases (by FTIR) and its effect on the mechanical properties and thermal stability of the samples were examined. The results of the study showed that in different amounts of graphene, these plates were preferentially located in the polymer phases dissimilarly and thus, caused the change of the blend morphology. In addition, measuring the mechanical properties by tensile test and results of thermal analysis by TGA indicated the improvement of thermal stability, modulus and mechanical strength and reduction of the elongation at break of graphene containing blends with increasing the loading of GNP. The changing behavior of the mechanical and thermal properties was proportional to the Graphene localization in blend phases.


2021 ◽  
Author(s):  
Yajun Chen ◽  
Jingxiu He ◽  
Zhe Sun ◽  
Bo Xu ◽  
Juan Li ◽  
...  

Abstract Cellulose nanocrystals (CNCs) have been used as bio-based carbon source in intumescent system. However, CNCs have the disadvantages of low onset decomposition temperature and decompose and carbonize during processing. We, herein, demonstrated the design of phosphazene-containing CNCs (P/N-CNCs) with great thermal stability and outstanding charring ability. The TGA results showed that the initial decomposition temperature of P/N-CNCs was increased from 202.4 ℃ to 272.2 ℃ (increased by 34.5%), and the residual char at 700 ℃ was increased from 24.9 wt% to 55.8 wt% compared with CNCs. Then, flame retardant PLA composites were prepared by blending PLA, P/N-CNCs with ammonium polyphosphate (APP), melamine (MPP), aluminum hypophosphite (AHP) and piperazine pyrophosphate (PPAP), respectively. The thermal stability, flame retardant properties and mechanical properties of PLA composites were investigated. The results showed that the flame retardant system constructed by 7 wt% APP and 3 wt% P/N-CNCs had the best effect in PLA. PLA/7APP/3P/N-CNCs had the highest limit oxygen index value (28.1%), the lowest peak heat release rate (266 kW/m2) and reached UL 94 V-0 rating. Moreover, the tensile strength, impact strength and elongation at break of PLA/7APP/3P/N-CNCs were increased by 7.3%, 18.6% and 29.4%, respectively, compared with these properties of PLA/7APP/ 3CNCs. This work provides a new idea for the design of CNCs with great thermal stability and outstanding charring ability, and offers a new method for the preparation of high-performance flame-retardant PLA composites.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26425-26436 ◽  
Author(s):  
Debdipta Basu ◽  
Amit Das ◽  
De-Yi Wang ◽  
Jinu Jacob George ◽  
Klaus Werner Stöckelhuber ◽  
...  

The capability of layered double hydroxide has been explored as a potential flame retardant filler and the effect of the mechanical properties, dynamic mechanical properties, and thermal stability of the composites was also studied.


2011 ◽  
Vol 194-196 ◽  
pp. 484-487 ◽  
Author(s):  
Xian Zhong Mo ◽  
Chen Mo ◽  
Xiang Qi ◽  
Ren Huan Li

Biopolymer cassava starch(ST)-chitosan(CS)/montmorillonite(MMT) nanocomposites were prepared in which MMT was used as nanofiller and diluted acetic acid was used as solvent for dissolving and dispersing cassava starch, chitosan and MMT. XRD and TEM results indicated the formation of an exfoliated nanostructure of ST-CS/MMT nanocomposites. Mechanical properties testing revealed that at the range of the MMT content from 1wt% to 5wt%, tensile strength of the composites increased from 30MPa to 37.5MPa. But the elongation at break fall from 28% to 22% with the increasing of MMT. Obviously, MMT had an enforced effect to the composites. TGA results showed that the nano-dispersed MMT improved the thermal stability of the matrix systematically with the increasing of MMT.


2016 ◽  
Vol 864 ◽  
pp. 23-27
Author(s):  
Ananda Manuela S. Mandalihan ◽  
Jaya L. Sitjar ◽  
Eduardo Magdaluyo Jr.

Structural sealants are one of the most essential construction materials due to a rising demand of buildings having glass panel faćades. Silicones are the most preferred base component due to their excellent properties appropriate for structural applications. The effect of titanium dioxide (TiO2) nanofillers on the mechanical and thermal properties of commercially available silicone-based sealants was investigated. The incorporation of 1 wt% and 2 wt% of TiO2 has caused an increase on the elongation at break SSG4000E and SilPruf SCS2000N sealants while an increase on the modulus of resilience was observed at SilPruf SCS2000N with 1wt% TiO2. The elastic modulus was highest at 5 wt% TiO2 for all sealants. Swelling behavior decreased with increasing nanofiller due to the physical crosslinking effect, thus preventing the diffusion of the solvent into the material. Thermal stability also improved with the incorporation of 2 wt% TiO2 as observed in the increase of the onset temperature of decomposition.


2010 ◽  
Vol 139-141 ◽  
pp. 129-132
Author(s):  
Dong Fang Li ◽  
Li Li ◽  
Jian Zhang Li

Wood plastic composite (WPC) is very useful new material in the modern society. Improving the interfacial bond strength between wood and plastic is the foundation of improving the properties of WPC. Ethylene vinyl acetate (EVA) was used as the coupling agent of WPC in this study. Thermo-gravimetric analysis (TGA) was employed to study the thermal stability of wood flour modified by EVA. The modulus of rupture (MOR), the modulus of elasticity (MOE), and the tensile strength of WPC were investigated to understand the effects of the vinyl acetate (VA) content and the melt index of EVA on WPC. The results show that EVA could improve the thermal stability of wood flour and the mechanical properties of WPC. The mechanical properties of WPC are increasing with VA content raise and melt index reducing.


2012 ◽  
Vol 488-489 ◽  
pp. 691-695
Author(s):  
Saowaroj Chuayjuljit ◽  
Thitima Rupunt

The focus of this study is to investigate the influences of ethylene octene copolymer (EOC) and carbon nanotubes (CNTs) on the mechanical properties (tensile and flexural properties) and thermal stability of polypropylene (PP)-based thermoplastic elastomer nanocomposites. The PP/EOC blends were prepared at two different weight ratios, 80/20 and 70/30 (w/w) PP/EOC, and each blend was compounded with a very low loading of CNTs (0.5-2 parts by weight per hundred of the PP/EOC resin). Both PP/EOC blends exhibited a higher elongation at break but a lower tensile strength, Young’s modulus and flexural strength as compared with those of the neat PP. However, the addition of CNTs caused a slightly change in the tensile strength and flexural strength but a more significant change in the Young’s modulus and elongation at break. The Young’s modulus and elongation at break of the PP/EOC blends were improved by filling with the appropriate loading of the CNTs. Thus, the combined use of EOC and CNTs can provide the balanced mechanical properties to the PP. Moreover, thermogravimetric analysis showed an improvement in the thermal stability of PP by the presence of both EOC and CNTs.


Sign in / Sign up

Export Citation Format

Share Document