Thermoplastic Elastomer Nanocomposites of Polypropylene/Ethylene Octene Copolymer/Carbon Nanotubes

2012 ◽  
Vol 488-489 ◽  
pp. 691-695
Author(s):  
Saowaroj Chuayjuljit ◽  
Thitima Rupunt

The focus of this study is to investigate the influences of ethylene octene copolymer (EOC) and carbon nanotubes (CNTs) on the mechanical properties (tensile and flexural properties) and thermal stability of polypropylene (PP)-based thermoplastic elastomer nanocomposites. The PP/EOC blends were prepared at two different weight ratios, 80/20 and 70/30 (w/w) PP/EOC, and each blend was compounded with a very low loading of CNTs (0.5-2 parts by weight per hundred of the PP/EOC resin). Both PP/EOC blends exhibited a higher elongation at break but a lower tensile strength, Young’s modulus and flexural strength as compared with those of the neat PP. However, the addition of CNTs caused a slightly change in the tensile strength and flexural strength but a more significant change in the Young’s modulus and elongation at break. The Young’s modulus and elongation at break of the PP/EOC blends were improved by filling with the appropriate loading of the CNTs. Thus, the combined use of EOC and CNTs can provide the balanced mechanical properties to the PP. Moreover, thermogravimetric analysis showed an improvement in the thermal stability of PP by the presence of both EOC and CNTs.

2019 ◽  
Vol 947 ◽  
pp. 77-81
Author(s):  
Natsuda Palawat ◽  
Phasawat Chaiwutthinan ◽  
Sarintorn Limpanart ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

The aim of this study is to improve the physical properties of poly(lactic acid) (PLA) by incorporating thermoplastic polyurethane (TPU), organo-montmorillonite (OMMT) and/or nanosilica (nSiO2). PLA was first melt mixed with five loadings of TPU (10–50 wt%) on a twin-screw extruder, followed by injection molding. The addition of TPU was found to increase the impact strength, elongation at break and thermal stability of the blends, but decrease the tensile strength and Young’s modulus. Based on a better combination of the mechanical properties, the 70/30 (w/w) PLA/TPU blend was selected for preparing both single and hybrid nanocomposites with a fix total nanofiller content of 5 parts per hundred of resin (phr), and the OMMT/nSiO2 weight ratios were 5/0, 2/3, 3/2 and 0/5 (phr/phr). The Young’s modulus and thermal stability of the nanocomposites were all higher than those of the neat 70/30 PLA/TPU blend, but at the expense of reducing the tensile strength, elongation at break and impact strength. However, all the nanocomposites exhibited higher impact strength and Young’s modulus than the neat PLA. Among the four nanocomposites, a single-filler nanocomposite containing 5 phr nSiO2 exhibited the highest impact strength and thermal stability, indicating that there was no synergistic effect of the two nanofillers on the investigated physical properties. However, the hybrid nanocomposite containing 2/3 (phr/phr) OMMT/nSiO2 possessed a compromise in the tensile properties.


2019 ◽  
Vol 953 ◽  
pp. 47-52
Author(s):  
Sirirat Wacharawichanant ◽  
Attachai Sriwattana ◽  
Kulaya Yaisoon ◽  
Manop Phankokkruad

The effects of the montmorillonite clay surface modified with 0.5-5 wt% aminopropyltriethoxysilane and 15-35% octadecylamine (Clay-APTSO) on morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/ethylene-octene copolymer (EOC)/Clay-APTSO composites were investigated. The blends of PLA/EOC with and without Clay-APTSO were prepared by melt mixing in an internal mixer. Scanning electron microscopy analysis observed the morphology of PLA/EOC blends demonstrated a phase separation of minor phase and matrix phase. The addition of Clay-APTSO in PLA/EOC blends showed significant decreased in droplet size of dispersed EOC phase, thus, Clay-APTSO acted as an effective compatibilizer in the PLA/EOC blends. The results of tensile properties found the decrease of Young’s modulus of PLA when added EOC due to the low modulus and flexibility of EOC. While the incorporation of Clay-APTSO increased significantly Young’s modulus of PLA/EOC blends at low EOC and Clay-APTSO content. The strain at break of the blends increased with the increase of EOC loading, this indicated the presence of EOC enhanced the elongation at break of PLA, while the addition Clay-APTSO reduced the strain at break of PLA/EOC blends. The tensile strength of all blend compositions improved when added Clay-APTSO and the tensile strength showed the highest value at 3 phr of Clay-APTSO. The thermal stability of PLA/EOC blends did not change when compared with neat PLA, and when added Clay-APTSO in the blends could improve the thermal stability of the PLA/EOC blends.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


2018 ◽  
Vol 917 ◽  
pp. 52-56
Author(s):  
Jirapornchai Suksaeree

Recently, Thai herbs are widely used as medicine to treat some illnesses. Zingiber cassumunar Roxb., known by the Thai name “Plai”, is a popular anti-inflammatory, antispasmodic herbal body and muscle treatment. This research aimed to prepare herbal patches that incorporated the 3 g of crude Z. cassumunar oil. The herbal patches made from different polymer blends were 2 g of 3.5%w/v chitosan and 5 g of 20%w/v hydroxypropyl methylcellulose (HPMC), or 2 g of 3.5%w/v chitosan and 5 g of 20%w/v polyvinyl alcohol (PVA) using 2 g of glycerin as a plasticizer. They were prepared by mixing all ingredients in a beaker and produced by solvent casting method in hot air oven at 70±2oC. The completed herbal patches were evaluated for their mechanical properties including Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion. The thickness of blank and herbal patches was 0.263-0.282 mm and 0.269-0.275 mm, respectively. Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion were 104.73-142.71 MPa, 87.92-93.28 MPa, 154.39-174.98 %, 3.43-4.88 MPa, and 5.29-7.02 MPa, respectively, for blank patches, and 116.83-147.28 MPa, 89.49-100.47 MPa, 133.78-159.27 %, 2.01-3.98 MPa, and 4.03-5.19 MPa, respectively, for herbal patches. We prepared herbal blended patches made from chitosan/PVA or chitosan/HPMC polymer matrix blends incorporating the crude Z. cassumunar oil. They had good mechanical properties that might be developed for herbal medicinal application.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Numan Salah ◽  
Abdulrahman Muhammad Alfawzan ◽  
Abdu Saeed ◽  
Ahmed Alshahrie ◽  
Waleed Allafi

AbstractCarbon nanotubes (CNTs) are widely investigated for preparing polymer nanocomposites, owing to their unique mechanical properties. However, dispersing CNTs uniformly in a polymer matrix and controlling their entanglement/agglomeration are still big technical challenges to be overcome. The costs of their raw materials and production are also still high. In this work, we propose the use of CNTs grown on oil fly ash to solve these issues. The CNTs of oil fly ash were evaluated as reinforcing materials for some common thermoplastics. High-density polyethylene (HDPE) was mainly reinforced with various weight fractions of CNTs. Xylene was used as a solvent to dissolve HDPE and to uniformly disperse the CNTs. Significantly enhanced mechanical properties of HDPE reinforced at a low weight fraction of these CNTs (1–2 wt.%), mainly the tensile strength, Young’s modulus, stiffness, and hardness, were observed. The tensile strength and Young’s modulus were enhanced by ~20 and 38%, respectively. Moreover, the nanoindentation results were found to be in support to these findings. Polycarbonate, polypropylene, and polystyrene were also preliminarily evaluated after reinforcement with 1 wt.% CNTs. The tensile strength and Young’s Modulus were increased after reinforcement with CNTs. These results demonstrate that the CNTs of the solid waste, oil fly ash, might serve as an appropriate reinforcing material for different thermoplastics polymers.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qing-Sheng Yang ◽  
Bing-Qi Li ◽  
Xiao-Qiao He ◽  
Yiu-Wing Mai

This investigation focuses on the design of functionalization configuration at the atomic level to determine the influence of atomic structure on the mechanical properties of functionalized carbon nanotubes (F-CNTs) and their composites. Tension and compressive buckling behaviors of different configurations of CNTs functionalized by H atoms are studied by a molecular dynamics (MD) method. It is shown that H-atom functionalization reduces Young’s modulus of CNTs, but Young’s modulus is not sensitive to the functionalization configuration. The configuration does, however, affect the tensile strength and critical buckling stress of CNTs. Further, the stress-strain relations of composites reinforced by nonfunctionalized and various functionalized CNTs are analyzed.


2012 ◽  
Vol 488-489 ◽  
pp. 945-949 ◽  
Author(s):  
Saowaroj Chuayjuljit ◽  
Thatisorn Karnjanamayul

In this study, tensile properties, thermal stability and morphology of polypropylene/ethylene propylene diene rubber/wollastonite (PP/EPDM/wollastonite) thermoplastic elastomer composites were tested and evaluated as a function of their compositions in comparison with PP/EPDM blends and native PP. PP was melt mixed with two loadings of EPDM (20 and 30% (w/w)) and for the composites each of these with three loadings of wollastonite (10, 20 and 30 parts by weight per hundred of the PP/EPDM resin) on a twin screw extruder and then injection molded. Both PP/EPDM blends provided a higher elongation at break but a lower tensile strength and Young’s modulus as compared with those of the neat PP. However, the addition of wollastonite microparticles (particle size of 1200 mesh) into the blends increased the Young’s modulus in a dose-dependent manner with increasing wollastonite loadings, whilst the tensile strength and elongation at break were decreased. Moreover, the thermal stability was improved by the presence of either EPDM or wollastonite in the PP matrix.


2020 ◽  
Vol 859 ◽  
pp. 9-14
Author(s):  
Thaniya Wunnakup ◽  
Chaowalit Monton ◽  
Laksana Charoenchai ◽  
Duangdeun Meksuriyen

The objective of this study was to apply rice bran protein hydrolysates (RBH) as bioactive additives of gelatin/Eudragit® NE 30D film and characterize the physicochemical and mechanical properties of its. The RBH was obtained by extraction with 2% sodium chloride (RBH-NaCl) and 0.1 N sodium hydroxide (RBH-NaOH) followed by digestion with Alcalase®. Then, RBH was incorporated in gelatin/Eudragit® NE 30D film. Effect of RBHs on film thickness, moisture content, pH, Young's modulus, tensile strength and the elongation at break were investigated. The RBH-NaCl enriched film showed non-homogeneous mixture and reduced moisture content, tensile strength and the elongation at break (1.8 – 2 folds). However, the RBH-NaOH enriched film exhibited a few non-homogeneous mixture and the Young's modulus was slightly decreased. The pH value was increased in the range of 6.77 – 6.88. Our results provide insight for the potential to develop RBH containing films as topical products.


2011 ◽  
Vol 295-297 ◽  
pp. 1516-1521 ◽  
Author(s):  
Li Bao An ◽  
Li Jia Feng ◽  
Chun Guang Lu

This paper presents a review of current research, both theoretical predictions and experimental measurements, on the mechanical properties of carbon nanotubes (CNTs). The emphasis has been given to the tensile strength and Young’s modulus. Deformabilities including buckling, bending, and twisting are also examined. The predicted and measured values of mechanical behaviors of CNTs are compared and an analysis on the variation of the values is made. The challenges facing the research of mechanical properties of CNTs are stated. CNT reinforced composites are involved as well in the paper. A thorough understanding of the properties of CNTs helps exploring full applications of this unique group of materials.


2018 ◽  
Vol 26 (8-9) ◽  
pp. 454-460 ◽  
Author(s):  
Ahmad Fikri Abdul Karim ◽  
Hanafi Ismail

Thermoplastic elastomer composites of polystyrene (PS) blended with styrene–butadiene rubber (SBR)–filled wollastonite were prepared using a laboratory scale internal mixer. The compatibiliser used in this study was maleic anhydride (MAH). The torque developments, morphology, and mechanical properties such as tensile strength, elongation at break, Young’s modulus and impact strength were studied. PS/SBR/wollastonite composites with the addition of MAH had higher torque than PS/SBR/wollastonite composites without MAH. Tensile strength, impact strength and elongation at break were reduced by increasing filler loading, both for composites with and without MAH. Composites with MAH had higher tensile strength but lower impact strength and elongation at break as compared with composites without MAH. The Young’s modulus increased with the wollastonite loading, whereas at a similar wollastonite loading, composites with MAH exhibited higher values of Young’s modulus than composites without MAH. Scanning electron microscopy on fracture surfaces showed better filler–matrix adhesion for composites with MAH.


Sign in / Sign up

Export Citation Format

Share Document