scholarly journals Forensic medical evaluation of dental-jaw injuries in cases of traffic accidents

2020 ◽  
Vol 26 (4) ◽  
pp. 5-10
Author(s):  
P.V. Plevinskis ◽  
V.D. Mishalov ◽  
S.V. Kozlov ◽  
N.M. Kozan ◽  
O.V. Dunayev

Information about the differential diagnosis of human bodily injuries, which were formed when the body, wheel and bottom of a modern car came into contact with the body of a pedestrian; a person on the road surface, in the cabin of a modern car (driver and passengers), when a cyclist comes into contact with a car, in cases of combined types of car injury, is not enough. The purpose of the study is to increase the objectivity of forensic examinations by determining the criteria for assessing damage to the dental system in cases of the most common types of accidents: collision of moving vehicle with man; run over the body with a wheels or the bottom of vehicle; at an injury inside the vehicle on the basis of the analysis of morphological features and the mechanism of the specified damages. The archival materials of 130 forensic medical examinations of the municipal institution “Odessa Regional Bureau of Forensic Medical Examination” concerning victims of living persons and corpses as a result of traffic accidents that were accompanied by their injuries in the period 2015-2020 were used. The following research methods were used: anthropometric, morphometric, photographic, radiological, statistical. The article presents our own experience of improving the objectivity and provability of forensic examinations by determining the criteria for assessing damage to the dental system in cases of the most common types of vehicle: collision of moving vehicle with man; run over the body with a wheels or the bottom of vehicle; at an injury inside the vehicle on the basis of the analysis of morphological features and the mechanism of the specified damages. It is proved that according to the degree of gravity of physical injuries (health disorder or disability), damage to the dental apparatus in traffic accidents should be investigated only in cases of isolated injuries. In this case, fractures of the jaws, regardless of their nature, should be assessed as moderate injuries according to the criterion of long-term health disorders; Crown fractures, traumatic tooth dislocations, and soft tissue fatal wounds should be considered simple injuries that have caused short-term health disorders. Abrasions, bruises should be attributed to simple injuries. Thus, it is impractical to separately determine the severity of the injury of the dental system in cases run over the head with a wheels or the bottom of vehicle - in these cases, we always deal with gross, massive destruction of the bones of the skull.

Author(s):  
Abdulmajeed Alamri ◽  
Tarek M. Esmael ◽  
Sami Fawzy ◽  
Hany Hosny ◽  
Saleh Attawi ◽  
...  

In this study, road traffic injury (RTI) was defined as any injury resulting from a road traffic accident irrespective of severity and outcome. Road traffic accident (RTA) was defined as any crash on the road involving at least one moving vehicle, irrespective of it resulting in an injury. This could include collision with a vehicle or any non`moving object while driving/riding a vehicle, collision with a moving vehicle while walking/running/standing/ sitting on the road, or fall from a moving vehicle. The burden of road traffic accidents (RTA) is a leading cause of all trauma admissions in hospitals worldwide. Road traffic injuries cause considerable economic losses to victims, their families, and to nations as a whole. These losses arise from the cost of treatment (including rehabilitation and incident investigation) as well as reduced/lost productivity (e.g. in wages) for those killed or disabled by their injuries and for family members who need to take time off work (or school) to care for the injured. Road traffic fatality in the Kingdom of Saudi Arabia (KSA) is the highest, accounts for 4.7% of all mortalities. Road injuries also are reported to be the most serious in this country, with an accident to injury ratio of 8:6. In this study, we try to focus on some causes of the accidents in KSA, so we can implement the prevention plan.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1136 ◽  
Author(s):  
Kwan Hyeong Lee

This study measured the speed of a moving vehicle in multiple lanes using a drone. The existing methods for measuring a vehicle’s speed while driving on the road measure the speed of moving automobiles by means of a sensor that is mounted on a structure. In another method, a person measures the speed of a vehicle at the edge of a road using a speed-measuring tool. The existing method for measuring a vehicle’s speed requires the installation of a gentry-structure; however, this produces a high risk for traffic accidents, which makes it impossible to measure a vehicle’s speed in multiple lanes at once. In this paper, a method that used a drone to measure the speed of moving vehicles in multiple lanes was proposed. The suggested method consisted of two LiDAR sets mounted on the drone, with each LiDAR sensor set measuring the speed of vehicles moving in one lane; that is, estimating the speed of moving vehicles in multiple lanes was possible by moving the drone over the road. The proposed method’s performance was compared with that of existing equipment in order to measure the speed of moving vehicles using the manufactured drone. The results of the experiment, in which the speed of moving vehicles was measured, showed that the Root Mean Square Error (RMSE) of the first lane and the second lane was 3.30 km/h and 2.27 km/h, respectively. The vehicle detection rate was 100% in the first lane. In the second lane, the vehicle detection rate was 94.12%, but the vehicle was not detected twice in the experiment. The average vehicle detection rate is 97.06%. Compared with the existing measurement system, the multi-lane moving vehicle speed measurement method that used the drone developed in this study reduced the risk of accidents, increased the convenience of movement, and measured the speed of vehicles moving in multiple lanes using a drone. In addition, it was more efficient than current measurement systems because it allowed an accurate measurement of speed in bad environmental conditions.


2020 ◽  
Vol 14 (1) ◽  
pp. 186-193
Author(s):  
Jinhwan Jang

Background: Faced with the high rate of traffic accidents under slippery road conditions, agencies attempt to quickly identify slippery spots on the road and drivers want to receive information on the impending dangerous slippery spot, also known as “black ice.” Methods: In this study, wheel slip, defined as the difference between both speeds of vehicular transition and wheel rotation, was used to detect road slipperiness. Three types of experiment cars were repeatedly driven on snowy and dry surfaces to obtain wheel slip data. Three approaches, including regression analysis, support vector machine (SVM), and deep learning, were explored to categorize into two states-slippery or non-slippery. Results: Results indicated that a deep learning model resulted in the best performance with accuracy of 0.972, only where sufficient data were obtained. SVM models universally showed good performance, with average accuracy of 0.965, regardless of sample size. Conclusion: The proposed models can be applied to any connected devices including digital tachographs and on-board units for cooperative ITS projects that gather wheel and transition speeds of a moving vehicle to enhance road safety in winter season though collecting followed by providing dangerous slippery spots on the road.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5152
Author(s):  
Juncheng Yao ◽  
Bo Wang ◽  
Yujie Hou ◽  
Liang Huang

Traffic accidents such as vehicle collisions with bridge guardrails occur frequently. These accidents cause damage to the driver and the vehicle as well as the bridge. A new type of assembled anti-collision guardrail is proposed in this study. LS-DYNA is a nonlinear display dynamic analysis software used to evaluate the safety of a new type of assembled anti-collision guardrail. A specific, numerically analyzed model of vehicle–guardrail collision is established using LS-DYNA. The energy distribution–time curve of the vehicle collision process is obtained. After comparison with measured data from the vehicle collision test, the model of vehicle–guardrail collision is verified as being correct. Based on this, we analyze the process of a vehicle collision on the assembled anti-collision guardrail. The result shows that the assembled anti-collision guardrail proposed in this paper can better change the trajectory of a moving vehicle and can prevent the vehicle from falling off the bridge. From the car body collision results, the assembled anti-collision guardrail for bridges proposed in this paper can reduce vehicle damage and can protect the driver effectively. From the analysis of the main girder stress on the bridge, an anti-collision guardrail installed on an existing bridge will not cause damage to the main girder during a collision. In order to study the influence of the four parameters on the anti-collision effect, we carried out a comparative calculation of multiple working conditions. The results show that the new type of assembled anti-collision guardrail has good protective performance under different working conditions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3849
Author(s):  
Martin Svoboda ◽  
Milan Chalupa ◽  
Karel Jelen ◽  
František Lopot ◽  
Petr Kubový ◽  
...  

The article deals with the measurement of dynamic effects that are transmitted to the driver (passenger) when driving in a car over obstacles. The measurements were performed in a real environment on a defined track at different driving speeds and different distributions of obstacles on the road. The reaction of the human organism, respectively the load of the cervical vertebrae and the heads of the driver and passenger, was measured. Experimental measurements were performed for different variants of driving conditions on a 28-year-old and healthy man. The measurement’s main objective was to determine the acceleration values of the seats in the vehicle in the vertical movement of parts of the vehicle cabin and to determine the dynamic effects that are transmitted to the driver and passenger in a car when driving over obstacles. The measurements were performed in a real environment on a defined track at various driving speeds and diverse distributions of obstacles on the road. The acceleration values on the vehicle’s axles and the structure of the driver’s and front passenger’s seats, under the buttocks, at the top of the head (Vertex Parietal Bone) and the C7 cervical vertebra (Vertebra Cervicales), were measured. The result of the experiment was to determine the maximum magnitudes of acceleration in the vertical direction on the body of the driver and the passenger of the vehicle when passing a passenger vehicle over obstacles. The analysis of the experiment’s results is the basis for determining the future direction of the research.


Author(s):  
Byeongjoon Noh ◽  
Dongho Ka ◽  
David Lee ◽  
Hwasoo Yeo

Road traffic accidents are a leading cause of premature deaths and globally pose a severe threat to human lives. In particular, pedestrians crossing the road present a major cause of vehicle–pedestrian accidents in South Korea, but we lack dense behavioral data to understand the risk they face. This paper proposes a new analytical system for potential pedestrian risk scenes based on video footage obtained by road security cameras already deployed at unsignalized crosswalks. The system can automatically extract the behavioral features of vehicles and pedestrians, affecting the likelihood of potentially dangerous situations after detecting them in individual objects. With these features, we can analyze the movement patterns of vehicles and pedestrians at individual sites, and understand where potential traffic risk scenes occur frequently. Experiments were conducted on four selected behavioral features: vehicle velocity, pedestrian position, vehicle–pedestrian distance, and vehicle–crosswalk distance. Then, to show how they can be useful for monitoring the traffic behaviors on the road, the features are visualized and interpreted to show how they may or may not contribute to potential pedestrian risks at these crosswalks: (i) by analyzing vehicle velocity changes near the crosswalk when there are no pedestrians present; and (ii) analyzing vehicle velocities by vehicle–pedestrian distances when pedestrians are on the crosswalk. The feasibility of the proposed system is validated by applying the system to multiple unsignalized crosswalks in Osan city, South Korea.


Author(s):  
Ahmed Y. Awad ◽  
Seshadri Mohan

This article applies machine learning to detect whether a driver is drowsy and alert the driver. The drowsiness of a driver can lead to accidents resulting in severe physical injuries, including deaths, and significant economic losses. Driver fatigue resulting from sleep deprivation causes major accidents on today's roads. In 2010, nearly 24 million vehicles were involved in traffic accidents in the U.S., which resulted in more than 33,000 deaths and over 3.9 million injuries, according to the U.S. NHTSA. A significant percentage of traffic accidents can be attributed to drowsy driving. It is therefore imperative that an efficient technique is designed and implemented to detect drowsiness as soon as the driver feels drowsy and to alert and wake up the driver and thereby preventing accidents. The authors apply machine learning to detect eye closures along with yawning of a driver to optimize the system. This paper also implements DSRC to connect vehicles and create an ad hoc vehicular network on the road. When the system detects that a driver is drowsy, drivers of other nearby vehicles are alerted.


Author(s):  
Zhenyao Zhang ◽  
Jianying Zheng ◽  
Hao Xu ◽  
Xiang Wang

The problem of traffic safety has become increasingly prominent owing to the increase in the number of cars. Traffic accidents often occur in an instant, which makes it necessary to obtain traffic data with high resolution. High-resolution micro traffic data (HRMTD) indicates that the spatial resolution reaches the centimeter level and that the temporal resolution reaches the millisecond level. The position, direction, speed, and acceleration of objects on the road can be extracted with HRMTD. In this paper, a LiDAR sensor was installed at the roadside for data collection. An adjacent-frame fusion method for vehicle detection and tracking in complex traffic circumstances is presented. Compared with the previous research, objects can be detected and tracked without object model extraction or a bounding box description. In addition, problems caused by occlusion can be improved using adjacent frames fusion in the vehicle detection and tracking algorithms in this paper. The data processing procedure are as follows: selection of area of interest, ground point removal, vehicle clustering, and vehicle tracking. The algorithm has been tested at different sites (in Reno and Suzhou), and the results demonstrate that the algorithm can perform well in both simple and complex application scenarios.


2018 ◽  
Vol 115 (3) ◽  
pp. 412-416
Author(s):  
Brooks Berndt

Today’s climate crisis provokes dystopian and utopian narratives of the future faced by humanity. To navigate the theological terrain between the present and an uncertain future, this article explores passages pertaining to the journey of Moses and the Israelites to the Promised Land. The guiding point of orientation for this exploration comes from a verse that captures the seeming powerlessness of the Israelites in the face of the giants inhabiting the Promised Land. Numbers 13:33 reads, “To ourselves we seemed like grasshoppers, and so we seemed to them.” Of crucial importance in coming to terms with such honest self-assessment is the period of discernment and growth that comes from being in the wilderness with the presence of a God who loves and empowers grasshoppers in the face of seemingly insurmountable odds. Because the future of the Body of Christ is inseparable from how the climate crisis is confronted, the journey through the wilderness becomes not merely a story for self-coping but rather a story about churches finding a way forward, even as some dystopian narratives place churches on the road to irrelevance and ultimately extinction. This article explores how the story of exodus provides a sacred ground for imagining a different, even if difficult, future.


2020 ◽  
Vol 10 (18) ◽  
pp. 6608
Author(s):  
Wins Cott Goh ◽  
Lee Vien Leong ◽  
Richard Jun Xian Cheah

This study was conducted in Malaysia, where motorcycle traffic accidents represent a high percentage of fatality among overall traffic accidents. Studies have shown that risk perception and positive outcome of risky riding behavior have a significant impact on a rider’s decision making. Therefore, this study is targeted at further understanding of Malaysian motorcyclists within the locality of their home country. A questionnaire survey was conducted to gather motorcycle rider’s information, together with their perception of the three factors mentioned above. A reliability test of the findings was analyzed using Cronbach’s Alpha, while a PCA analysis was conducted to determine the linear combinations that have maximum variance. Subsequently, a statistical model was constructed based on the latent variables’ relations, the relation between the latent variables and observed variables, and also the hypothesis model. The model confirms that the positive affect of the risky behavior has a significant positive relationship with motorcyclists’ risk behavior (estimate coefficient = 1.016). Findings in the model also show that older motorcyclists are less likely to take part in risky riding behavior while riding on the road, with an estimate coefficient of −0.037 and a negative relationship with positive affect (estimate coefficient = −0.032).


Sign in / Sign up

Export Citation Format

Share Document