Re-Thin a TEM Lamella by Using a Novel TEM Sample Preparation

Author(s):  
C. R. Chen

Abstract Conventional FIB ex-situ lift-out is the most common technique for precise TEM sample preparation. But this method has some limitations and so in-situ lift-out technique was developed to overcome these drawbacks. The in-situ lift-out technique lifts-out the sample and then attaches the sample to a half-cut copper grid inside the FIB chamber by mini-probing system. This paper introduces a novel and simple technique that can overcome the above problems and a wide application of TEM samples preparation. The examples highlighted here demonstrate the novel method of low cost and high image quality TEM sample preparation. The method can reduce the amorphous phenomenon on the sidewall of specimen; no shield effect was found during the reprocess of thinning by ion-miller; and no contamination induced by the ion-miller sputtering was formed.

Author(s):  
Jon C. Lee ◽  
B.H. Lee

Abstract The device features have shrunk to sub-micron/nano-meter range, and the process technology has been getting more complicated, so TEM has become a necessary tool for PFA imaging and element analysis. Conventional FIB ex-situ liftout is the most common technique for precise sample preparation. But this method has some limitations: samples cannot be reprocessed for further analysis; the carbon film supported grid affects the EDS analysis for carbon elements. A new installation will be introduced in this article, which is set up in FIB chamber for in-situ lift-out application. It not only overcomes the above problems, but also covers a wide application of TEM sample preparation.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Liew Kaeng Nan ◽  
Lee Meng Lung

Abstract Conventional FIB ex-situ lift-out is the most common technique for TEM sample preparation. However, the scaling of semiconductor device structures poses great challenge to the method since the critical dimension of device becomes smaller than normal TEM sample thickness. In this paper, a technique combining 30 keV FIB milling and 3 keV ion beam etching is introduced to prepare the TEM specimen. It can be used by existing FIBs that are not equipped with low-energy ion beam. By this method, the overlapping pattern can be eliminated while maintaining good image quality.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


2021 ◽  
Author(s):  
Kasturi Vimalanathan ◽  
Timotheos Palmer ◽  
Zoe Gardner ◽  
Irene Ling ◽  
Soraya Rahpeima ◽  
...  

Herein, we have explored the use of a microfluidics platform for the exfoliation and oxidation of liquid gallium into ultrathin sheets of gallium oxide under continuous flow condition. The novel method developed here takes advantage of the high mass transfer in liquids and has the potential for creating high yielding thin sheets of oxidised gallium with insulating properties as well as acts as an active catalyst in hydrogen evolution reactions. This highlights the potential utility of the sheets as an alternative to the expensive and scarce noble metal based electrocatalysts


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 911
Author(s):  
Jesse Ross-Jones ◽  
Tobias Teumer ◽  
Susann Wunsch ◽  
Lukas Petri ◽  
Hermann Nirschl ◽  
...  

The industrial particle sensor market lacks simple, easy to use, low cost yet robust, safe and fast response solutions. Towards development of such a sensor, for in-line use in micro channels under continuous flow conditions, this work introduces static light scattering (SLS) determination of particle diameter using a laser with an emission power of less than 5 µW together with sensitive detectors with detection times of 1 ms. The measurements for the feasibility studies are made in an angular range between 20° and 160° in 2° increments. We focus on the range between 300 and 1000 nm, for applications in the production of paints, colors, pigments and crystallites. Due to the fast response time, reaction characteristics in microchannel designs for precipitation and crystallization processes can be studied. A novel method for particle diameter characterization is developed using the positions of maxima and minima and slope distribution. The novel algorithm to classify particle diameter is especially developed to be independent of dispersed phase concentration or concentration fluctuations like product flares or signal instability. Measurement signals are post processed and particle diameters are validated against Mie light scattering simulations. The design of a low cost instrument for industrial use is proposed.


Author(s):  
Hyoung H. Kang ◽  
John F. King ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
James P. Nadeau ◽  
...  

Abstract This paper introduces a high volume and fast turnaround TEM sample preparation method and requirements for a 300 mm inline DualBeam (FIB/SEM) system with “hands-off” full automation. It requires a factory automation system, robust automated recipes, and an ex-situ TEM lamella liftout system. It describes the recipe structure and TEM lamella lift out procedures. The focus is on fully automated TEM sample preparation for process monitoring in manufacturing line. Two successful examples are described to demonstrate the benefit of this method. The first one is TEM sample for CA profile at M1 level. The second is TEM sample for poly crystalline (PC) line profile at post-etch.


Author(s):  
Jian-Shing Luo ◽  
Hsiu-Ting Lee ◽  
San-Lin Liew ◽  
Ching-Shan Sung ◽  
Yi-Jing Wu

Abstract The use of in-situ lift-out combined with focused ion beam milling has become a favorable choice as it offers several indispensable advantages compared to the conventional mechanical and ex-situ lift-out sample preparation techniques. This paper discusses the procedures of the multiple-post in-situ lift-out grids preparation using a dicing saw. In addition, a real case is described to show that the multiple-post in-situ lift-out grids have been successfully applied to failure analysis. The multiple-post in-situ lift-out grids provide more positions and flatter surfaces for TEM sample mounting. The flat surface greatly increases the mounting efficiency and success rate. For the real case application, a thick Al fluoride oxide layer and Al corrosion were found above the Al bond pads, which had NOSP problem, and their neighbor area, respectively.


2004 ◽  
Vol 4 (6) ◽  
pp. 7631-7665 ◽  
Author(s):  
F. Weidner ◽  
H. Bösch ◽  
H. Bovensmann ◽  
J. P. Burrows ◽  
A. Butz ◽  
...  

Abstract. A novel light-weight, elevation scanning and absolutely calibrated UV/vis spectrometer and its application to balloon-borne Limb radiance and trace gas measurements is described. Its performance and the novel method of balloon-borne UV/vis Limb trace gas measurements has been tested against simultaneous observations of the same atmospheric parameters available from either (a) in-situ instrumentation (cf., by an electrochemical cell (ECC) ozone sonde also deployed aboard the gondola) or (b) trace gas profiles from inferred UV/vis/near IR solar occultation measurements performed on the same payload. The novel technique is also cross validated with radiative transfer modelling. Reasonable agreement is found (a) between measured and simulated Limb radiances and (b) inferred Limb O3, NO2 and BrO and otherwise measured profiles when properly accounting for all relevant atmospheric parameters (temperature T, pressure P, aerosol extinction, and major absorbers).


1997 ◽  
Vol 480 ◽  
Author(s):  
K. B. Belay ◽  
M. C. Ridgway ◽  
D. J. Llewellyn

AbstractIn-situ transmission electron microscopy (TEM) has been used to characterize the solidphase epitaxial growth of amorphized GaAs at a temperature of 260°C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs (3xI) mm rectangular slabs were cut then glued face-to-face to a size of (6x3) mm stack by maintaining the TEM region at the center. This stack was subsequently polished to a thickness of ~ 200 ýtm. A 3 mm disc was then cut from it using a Gatan ultrasonic cutter. The disc was polished and dimpled on both sides to a thickness of ~15 mimT.h is was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20°C from that of the heated holder. The influence of electron-irradiated was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of “thin-foil effect” was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be eliminated by the appropriate choice of sample preparation procedures.


Sign in / Sign up

Export Citation Format

Share Document