scholarly journals Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power

Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 911
Author(s):  
Jesse Ross-Jones ◽  
Tobias Teumer ◽  
Susann Wunsch ◽  
Lukas Petri ◽  
Hermann Nirschl ◽  
...  

The industrial particle sensor market lacks simple, easy to use, low cost yet robust, safe and fast response solutions. Towards development of such a sensor, for in-line use in micro channels under continuous flow conditions, this work introduces static light scattering (SLS) determination of particle diameter using a laser with an emission power of less than 5 µW together with sensitive detectors with detection times of 1 ms. The measurements for the feasibility studies are made in an angular range between 20° and 160° in 2° increments. We focus on the range between 300 and 1000 nm, for applications in the production of paints, colors, pigments and crystallites. Due to the fast response time, reaction characteristics in microchannel designs for precipitation and crystallization processes can be studied. A novel method for particle diameter characterization is developed using the positions of maxima and minima and slope distribution. The novel algorithm to classify particle diameter is especially developed to be independent of dispersed phase concentration or concentration fluctuations like product flares or signal instability. Measurement signals are post processed and particle diameters are validated against Mie light scattering simulations. The design of a low cost instrument for industrial use is proposed.

2015 ◽  
Vol 37 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Tomasz Śliwa ◽  
Maciej Jarzębski ◽  
Kosma Szutkowski

The most popular technique for particle size characterization is the dynamic light scattering (DLS). In recent years new advanced method based on counting each single particle movement was introduced giving perspective for measurement of each component of mixture. This study presents some advantages of nanoparticle tracking analysis (NTA) method in comparison to DLS. For tests standard polystyrene beds were chosen vary diameter of 22, 61 and 150 nm and its mixtures. Experiments showed that the particles size resolution allows to distinguish each population in two population suspension opposed to DLS. The NTA method permits to eliminate the negative effects i.e. dust or aggregates in sample during post processing, that permits to use it in a variety of studies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Julian Neu ◽  
Jonas Hubertus ◽  
Sipontina Croce ◽  
Günter Schultes ◽  
Stefan Seelecke ◽  
...  

The availability of compliant actuators is essential for the development of soft robotic systems. Dielectric elastomers (DEs) represent a class of smart actuators which has gained a significant popularity in soft robotics, due to their unique mix of large deformation (>100%), lightweight, fast response, and low cost. A DE consists of a thin elastomer membrane coated with flexible electrodes on both sides. When a high voltage is applied to the electrodes, the membrane undergoes a controllable mechanical deformation. In order to produce a significant actuation stroke, a DE membrane must be coupled with a mechanical biasing system. Commonly used spring-like bias elements, however, are generally made of rigid materials such as steel, and thus they do not meet the compliance requirements of soft robotic applications. To overcome this issue, in this paper we propose a novel type of compliant mechanism as biasing elements for DE actuators, namely a three-dimensional polymeric dome. When properly designed, such types of mechanisms exhibit a region of negative stiffness in their force-displacement behavior. This feature, in combination with the intrinsic softness of the polymeric material, ensures large actuation strokes as well as compliance compatibility with soft robots. After presenting the novel biasing concept, the overall soft actuator design, manufacturing, and assembly are discussed. Finally, experimental characterization is conducted, and the suitability for soft robotic applications is assessed.


Author(s):  
C. R. Chen

Abstract Conventional FIB ex-situ lift-out is the most common technique for precise TEM sample preparation. But this method has some limitations and so in-situ lift-out technique was developed to overcome these drawbacks. The in-situ lift-out technique lifts-out the sample and then attaches the sample to a half-cut copper grid inside the FIB chamber by mini-probing system. This paper introduces a novel and simple technique that can overcome the above problems and a wide application of TEM samples preparation. The examples highlighted here demonstrate the novel method of low cost and high image quality TEM sample preparation. The method can reduce the amorphous phenomenon on the sidewall of specimen; no shield effect was found during the reprocess of thinning by ion-miller; and no contamination induced by the ion-miller sputtering was formed.


RSC Advances ◽  
2018 ◽  
Vol 8 (56) ◽  
pp. 32333-32343 ◽  
Author(s):  
Imen Ben Elkamel ◽  
Nejeh Hamdaoui ◽  
Amine Mezni ◽  
Ridha Ajjel ◽  
Lotfi Beji

This study involves the novel fabrication of a high responsivity, fast response, and low-cost (UV) photodetector (PD) based on ZnO/Ni nanoparticles deposited on a glass substrate.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 9-17
Author(s):  
ALESSANDRA GERLI ◽  
LEENDERT C. EIGENBROOD

A novel method was developed for the determination of linting propensity of paper based on printing with an IGT printability tester and image analysis of the printed strips. On average, the total fraction of the surface removed as lint during printing is 0.01%-0.1%. This value is lower than those reported in most laboratory printing tests, and more representative of commercial offset printing applications. Newsprint paper produced on a roll/blade former machine was evaluated for linting propensity using the novel method and also printed on a commercial coldset offset press. Laboratory and commercial printing results matched well, showing that linting was higher for the bottom side of paper than for the top side, and that linting could be reduced on both sides by application of a dry-strength additive. In a second case study, varying wet-end conditions were used on a hybrid former machine to produce four paper reels, with the goal of matching the low linting propensity of the paper produced on a machine with gap former configuration. We found that the retention program, by improving fiber fines retention, substantially reduced the linting propensity of the paper produced on the hybrid former machine. The papers were also printed on a commercial coldset offset press. An excellent correlation was found between the total lint area removed from the bottom side of the paper samples during laboratory printing and lint collected on halftone areas of the first upper printing unit after 45000 copies. Finally, the method was applied to determine the linting propensity of highly filled supercalendered paper produced on a hybrid former machine. In this case, the linting propensity of the bottom side of paper correlated with its ash content.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Author(s):  
Zaheer Ahmed ◽  
Alberto Cassese ◽  
Gerard van Breukelen ◽  
Jan Schepers

AbstractWe present a novel method, REMAXINT, that captures the gist of two-way interaction in row by column (i.e., two-mode) data, with one observation per cell. REMAXINT is a probabilistic two-mode clustering model that yields two-mode partitions with maximal interaction between row and column clusters. For estimation of the parameters of REMAXINT, we maximize a conditional classification likelihood in which the random row (or column) main effects are conditioned out. For testing the null hypothesis of no interaction between row and column clusters, we propose a $$max-F$$ m a x - F test statistic and discuss its properties. We develop a Monte Carlo approach to obtain its sampling distribution under the null hypothesis. We evaluate the performance of the method through simulation studies. Specifically, for selected values of data size and (true) numbers of clusters, we obtain critical values of the $$max-F$$ m a x - F statistic, determine empirical Type I error rate of the proposed inferential procedure and study its power to reject the null hypothesis. Next, we show that the novel method is useful in a variety of applications by presenting two empirical case studies and end with some concluding remarks.


2021 ◽  
Vol 45 (5) ◽  
pp. 2470-2477
Author(s):  
P. Golvari ◽  
E. Nouri ◽  
N. Mohsenzadegan ◽  
M. R. Mohammadi ◽  
S. O. Martinez-Chapa

Cost-effective DSCs with superior electronic properties are gained by a reduction in electronic trap states and outstanding light scattering and harvesting.


Languages ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 123
Author(s):  
Thomas A. Leddy-Cecere

The Arabic dialectology literature repeatedly asserts the existence of a macro-level classificatory relationship binding the Arabic speech varieties of the combined Egypto-Sudanic area. This proposal, though oft-encountered, has not previously been formulated in reference to extensive linguistic criteria, but is instead framed primarily on the nonlinguistic premise of historical demographic and genealogical relationships joining the Arabic-speaking communities of the region. The present contribution provides a linguistically based evaluation of this proposed dialectal grouping, to assess whether the postulated dialectal unity is meaningfully borne out by available language data. Isoglosses from the domains of segmental phonology, phonological processes, pronominal morphology, verbal inflection, and syntax are analyzed across six dialects representing Arabic speech in the region. These are shown to offer minimal support for a unified Egypto-Sudanic dialect classification, but instead to indicate a significant north–south differentiation within the sample—a finding further qualified via application of the novel method of Historical Glottometry developed by François and Kalyan. The investigation concludes with reflection on the implications of these results on the understandings of the correspondence between linguistic and human genealogical relationships in the history of Arabic and in dialectological practice more broadly.


Sign in / Sign up

Export Citation Format

Share Document