Tester-Driven Dynamic Laser Stimulation for Hard Functional Failure

Author(s):  
S.H. Goh ◽  
Y.H. Chan ◽  
F. Zheng ◽  
H. Tan ◽  
J.W. Ting ◽  
...  

Abstract Dynamic Laser Stimulation (DLS) fault isolation techniques involve using an Automated Test Equipment (ATE) to run the device under certain test patterns together and a scanning laser beam to localize sites sensitive to laser stimulation. Such techniques are proven effective for localizing soft failures. In this paper, we demonstrate the feasibility of using such dynamic techniques for functional hard failures and design debug applications. We illustrate experimentally the significance of achieving sufficient signal to noise ratio (SNR) before such applications can be realized effectively, due to the large irregular noise that couples through as the functional pattern is run. We adopted a combination of hardware noise reduction and test program modification to overcome this challenge.

Author(s):  
Jeffrey Javier ◽  
Taylor Hurdle ◽  
Sammie Fernandez ◽  
Kari Van Vliet

Abstract The increasing electrical design and physical complexity of semiconductor devices, especially in the analog and mixed signal (AMS) applications, directly influences the development and evolution of fault isolation techniques. One of these techniques is Dynamic Laser Stimulation (DLS) which is widely used in the industry for effective identification of subtle failure mechanisms and soft defects especially for AC signal-related failures [1, 2]. However, for analysis of some complex AMS IC failure modes, the tool’s standard setup may not always be compatible with the biasing requirements of the device. For example, the setup would typically require expensive and intricate test systems (i.e. Automatic test equipment (ATE), SCAN tester, etc.) to be interfaced with the DLS tool for the analysis to be feasible and successful [3, 4]. This paper presents simple and practical techniques to implement DLS without the need for an expensive test support system. These techniques were applied in three different FA cases involving AMS ICs with complex and temperature-dependent failure modes. The results of subsequent analysis indicated success in isolating the exact defect sites.


2016 ◽  
Vol 846 ◽  
pp. 740-747
Author(s):  
Muhammad Adib Akram Mohdami Norashid ◽  
M. Kamil Abd-Rahman

This paper presents an acousto-optics analysis on free space optical signals modulated by two distinguishable non-resonant acoustic waves. The acoustic waves were directed at two different directions and locations along a laser beam and created non-interference modulated optical signals. The photonics microphone deploys low-powered eye-safe continuous-wave 633-nm laser; high-speed photodiode and a series of Fourier lenses. Two transducers generating 20 Hz to 20 kHz acoustic waves were directed across the laser beam. The receiving modulated signal was filtered and amplified electronically by two sets of passive bandpass filter separated by a transimpedance amplifier and connected to a computer for analysis. The signal was further digitally filtered and amplified to enhance the signal-to-noise ratio via MATLAB software. These signals were analyzed in time and frequency domains using Fast Fourier Transform (FFT) and Spectrogram. It was found that the recorded signals demonstrated higher signal intensities for lower acoustic frequencies with digital signal-to-noise ratio (SNR) ranging from 10.77 to 71.92 for frequency of 1 kHz to 20 kHz and 20 Hz to 1 kHz respectively. The frequencies of both transducers were simultaneously swept through from 20 Hz and 20 kHz respectively. These scanning frequencies approached one another and crossover with no resonant frequency was observed. This illustrates that it is able to detect multiple acoustic signals for any given frequencies along the laser beam and found its applications in stealth sound detection and long range sound sensor. Though low-powered 1-mW laser was used, a relatively high signal-to-noise ratio with clear-recorded playback was achieved.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
W. Baumeister ◽  
R. Rachel ◽  
R. Guckenberger ◽  
R. Hegerl

IntroductionCorrelation averaging (CAV) is meanwhile an established technique in image processing of two-dimensional crystals /1,2/. The basic idea is to detect the real positions of unit cells in a crystalline array by means of correlation functions and to average them by real space superposition of the aligned motifs. The signal-to-noise ratio improves in proportion to the number of motifs included in the average. Unlike filtering in the Fourier domain, CAV corrects for lateral displacements of the unit cells; thus it avoids the loss of resolution entailed by these distortions in the conventional approach. Here we report on some variants of the method, aimed at retrieving a maximum of information from images with very low signal-to-noise ratios (low dose microscopy of unstained or lightly stained specimens) while keeping the procedure economical.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


1979 ◽  
Vol 10 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Veronica Smyth

Three hundred children from five to 12 years of age were required to discriminate simple, familiar, monosyllabic words under two conditions: 1) quiet, and 2) in the presence of background classroom noise. Of the sample, 45.3% made errors in speech discrimination in the presence of background classroom noise. The effect was most marked in children younger than seven years six months. The results are discussed considering the signal-to-noise ratio and the possible effects of unwanted classroom noise on learning processes.


2020 ◽  
Vol 63 (11) ◽  
pp. 3855-3864
Author(s):  
Wanting Huang ◽  
Lena L. N. Wong ◽  
Fei Chen ◽  
Haihong Liu ◽  
Wei Liang

Purpose Fundamental frequency (F0) is the primary acoustic cue for lexical tone perception in tonal languages but is processed in a limited way in cochlear implant (CI) systems. The aim of this study was to evaluate the importance of F0 contours in sentence recognition in Mandarin-speaking children with CIs and find out whether it is similar to/different from that in age-matched normal-hearing (NH) peers. Method Age-appropriate sentences, with F0 contours manipulated to be either natural or flattened, were randomly presented to preschool children with CIs and their age-matched peers with NH under three test conditions: in quiet, in white noise, and with competing sentences at 0 dB signal-to-noise ratio. Results The neutralization of F0 contours resulted in a significant reduction in sentence recognition. While this was seen only in noise conditions among NH children, it was observed throughout all test conditions among children with CIs. Moreover, the F0 contour-induced accuracy reduction ratios (i.e., the reduction in sentence recognition resulting from the neutralization of F0 contours compared to the normal F0 condition) were significantly greater in children with CIs than in NH children in all test conditions. Conclusions F0 contours play a major role in sentence recognition in both quiet and noise among pediatric implantees, and the contribution of the F0 contour is even more salient than that in age-matched NH children. These results also suggest that there may be differences between children with CIs and NH children in how F0 contours are processed.


Sign in / Sign up

Export Citation Format

Share Document