Fault Isolation Techniques and Studies on Low Resistance Gross Short Failures

Author(s):  
P.K. Tan ◽  
Z.H. Mai ◽  
W.Y. Lee ◽  
Y.Z. Ma ◽  
R. He ◽  
...  

Abstract With the scaling down of semiconductor devices to nanometer range, fault isolation and physical failure analysis (PFA) have become more challenging. In this paper, different types of fault isolation techniques to identify gross short failures in nanoscale devices are discussed. The proposed cut/deprocess and microprobe/bench technique is an economical and simple way of identifying low resistance gross short failures.

Author(s):  
P.K. Tan ◽  
Z.H. Mai ◽  
S.L. Toh ◽  
E. Hendarto ◽  
Q. Deng ◽  
...  

Abstract With the scaling down of semiconductor devices to nanometer range, physical failure analysis (PFA) has become more challenging. In this paper, a different method of performing PFA to identify a physical vertical short of intermetal layer in nanoscale devices is discussed. The proposed chemical etch and backside chemical etch PFA techniques have the advantages of sample preparation evenness and efficiency compared to conventional PFA. This technique also offers a better understanding of the failure mechanism and is easier to execute in identifying the vertical short issue.


Author(s):  
C.Q. Chen ◽  
P.T. Ng ◽  
G.B. Ang ◽  
Francis Rivai ◽  
S.L. Ting ◽  
...  

Abstract As semiconductor technology keeps scaling down, failure analysis and device characterizations become more and more challenging. Global fault isolation without detailed circuit information comprises the majority of foundry EFA cases. Certain suspected areas can be isolated, but further narrow-down of transistor and device performance is very important with regards to process monitoring and failure analysis. A nanoprobing methodology is widely applied in advanced failure analysis, especially during device level electrical characterization. It is useful to verify device performance and to prove the problematic structure electrically. But sometimes the EFA spot coverage is too big to do nanoprobing analysis. Then further narrow-down is quite critical to identify the suspected structure before nanoprobing is employed. That means there is a gap between global fault isolation and localized device analysis. Under these kinds of situation, PVC and AFP current image are offen options to identify the suspected structure, but they still have their limitation for many soft defect or marginal fails. As in this case, PVC and AFP current image failed to identify the defect in the spot range. To overcome the shortage of PVC and AFP current image analysis, laser was innovatively applied in our current image analysis in this paper. As is known to all, proper wavelength laser can induce the photovoltaic effect in the device. The photovoltaic effect induced photo current can bring with it some information of the device. If this kind of information was properly interpreted, it can give us some clue of the device performance.


Author(s):  
Chris Eddleman ◽  
Nagesh Tamarapalli ◽  
Wu-Tung Cheng

Abstract Yield analysis of sub-micron devices is an ever-increasing challenge. The difficulty is compounded by the lack of in-line inspection data as many companies adopt foundry or fab-less models for acquiring wafers. In this scenario, failure analysis is increasingly critical to help drive yields. Failure analysis is a process of fault isolation, or a method of isolating failures as precisely as possible followed by identification of a physical defect. As the number of transistors and metal layers increase, traditional fault isolation techniques are less successful at isolating a cause of failures. Costs are increasing due to the amount of time needed to locate the physical defect. One solution to the yield analysis problem is scan diagnosis based fault isolation. Previous scan diagnosis based techniques were limited with little information about the type of fault and confidence of diagnosis. With new scan diagnosis algorithms it is now possible to not only isolate, but to identify the type of fault as well as assigning a confidence ranking prior to any destructive analysis. This paper presents multiple case studies illustrating the application of scan diagnosis as an effective means to achieve yield enhancement. The advanced scan diagnostic tool used in this study provides information about the fault type as well as fault location. This information focuses failure analysis efforts toward a suspected defect, decreasing the cycle time required to determine root cause, as well as increasing the over all success rate.


Author(s):  
Charles Zhang ◽  
Matt Thayer ◽  
Lowell Herlinger ◽  
Greg Dabney ◽  
Manuel Gonzalez

Abstract A number of backside analysis techniques rely on the successful use of optical beams in performing backside fault isolation. In this paper, the authors have investigated the influence of the 1340 nm and 1064 nm laser wavelength on advanced CMOS transistor performance.


Author(s):  
Tommaso Melis ◽  
Emmanuel Simeu ◽  
Etienne Auvray

Abstract Getting accurate fault isolation during failure analysis is mandatory for success of Physical Failure Analysis (PFA) in critical applications. Unfortunately, achieving such accuracy is becoming more and more difficult with today’s diagnosis tools and actual process node such as BCD9 and FinFET 7 nm, compromising the success of subsequent PFA done on defective SoCs. Electrical simulation is used to reproduce emission microscopy, in our previous work and, in this paper, we demonstrate the possibility of using fault simulation tools with the results of electrical test and fault isolation techniques to provide diagnosis with accurate candidates for physical analysis. The experimental results of the presented flow, from several cases of application, show the validity of this approach.


Author(s):  
Kevin Gearhardt ◽  
Chris Schuermyer ◽  
Ruifeng Guo

Abstract This paper presents an iterative diagnosis test generation framework to improve logic fault diagnosis resolution. Industrial examples are presented in this paper on how additional targeted pattern generation can be used to improve defect localization before physical failure analysis of a die. This enables failure analysts to be more effective by reducing the dependence on the more expensive physical fault isolation techniques.


Author(s):  
Hasan Faraby ◽  
Tristan Deborde ◽  
Martin von Haartman

Abstract This paper analyzes the through-put time and output of fault isolation and failure analysis (FI/FA) flows on state-of-the-art microprocessors. An average reduction in through-put time of 40% was demonstrated with a shortened FI/FA flow while still maintaining a high success rate. The direct FA/nano-probing flow which was utilized by up to around 90% of the fail cases omitted the optical fault isolation step and instead expanded the use of plasma FIB, nano-probing and electrical isolation techniques (such as diagnosis tools). The end result is shorter through-put time and higher FI/FA volume which is important in order to achieve a faster production ramp. In the paper two cases studies are presented to demonstrate the new efficient FI/FA techniques.


Author(s):  
Eric Barbian ◽  
Rommel Estores

Abstract This paper will present a practical implementation of ATPG testing and diagnosis in Failure Analysis resulting in a fast and efficient iterative ATPG diagnosis and fault isolation. On this implementation, a compact test HW instead of an ATE is used for cost-effective ATPG testing and characterization capability. The advantages of this implementation are combined with ATPG tools to make it possible to achieve a faster and more efficient implementation of iterative ATPG diagnosis, Dynamic Analysis by Laser Stimulation (DALS) analysis or similar techniques. The requirements needed in order to implement ATPG testing and diagnosis in FA lab will be discussed. Success in determining root cause, especially on the complex analysis cases is determined by the complimentary combination of various fault isolation techniques. Knowledge of the fundamentals of these techniques combined with creative thinking process of the analyst leads to the approaches and solutions that maximize the combined advantages of these techniques.


Author(s):  
C.Q. Chen ◽  
Z.H. Mai ◽  
G.B. Ang ◽  
B.H. Liu ◽  
P.T. Ng ◽  
...  

Abstract As the technology keeps scaling down and IC design becomes more and more complex, failure analysis becomes much more challenging, especially for static fault isolation. For semiconductor foundry FA, it will become even more challenging due to lack of enough information. Static fault isolation is the major global fault isolation methodology in foundry FA and it is difficult to access and trigger the failing signal detected by scan and BIST test, which is widely applied in modern IC design. Because, in most of the time, the normal two pin bias (Vdd and Vss) can only get the comparable IV result between bad unit and the reference unit for function related fail. There are two possibilities from reverse engineering perspective. Firstly, the defect location may not be accessed by the DC bias. Secondly, even if the defect can be accessed, but the defect induced current or voltage change is too small to be differentiated from the overall signal. So it will be concealed in the overall current. However, it is still possible for us to do global fault isolation for the second situation. In this paper, a unit with Iddoff failure was analyzed. Although, no significant IV difference was observed between failed and reference units, a distinct Photon Emission (EMMI) spot was successfully observed in the failed unit. Layout analysis and process analysis on this EMMI spot further confirmed the reality of the emission spot.


Author(s):  
N.M. Wu ◽  
K. Weaver ◽  
J.H. Lin

Abstract With increasing complexity of circuit layout on the die and special packages in which the die are flipped over, failure analysis on the die front side, sometimes, can not solve the problems or is not possible by opening the front side of the package to expose the die front side. This paper discusses fault isolation techniques and procedures used on the back side of the die. The two major back side techniques, back side emission microscopy and back side OBIC (Optical Beam Induced Current), are introduced and applied to solve real problems in failure analysis. A back side decapsulation technique and procedure are also introduced. Last, several examples are given. The results indicated that the success in finding root cause of failure is greatly increased when these techniques are used in addition to the traditional front side analysis approaches.


Sign in / Sign up

Export Citation Format

Share Document