Physical and Electrical Performance Comparison of Identical 28 nm Qualcomm Telecommunication Die Produced by Samsung and TSMC

Author(s):  
Anton Riley ◽  
Sean Zumwalt ◽  
Sinjin Dixon-Warren ◽  
Gary Tomkins

Abstract In today’s competitive semiconductor environment, product performance and market timing has never been more valuable. Design IP, speed to market, and taking advantage of the most advanced technology are three ways fabless companies can maintain an advantage over the competition. Foundries target these demands by offering superior support, competitive technology, and rapid development cycles. Using the advanced tool suites of SEM, FIB, TEM, and Atomic Force NanoProbing (AFP) the failure analysis community now has the ability to investigate and compare foundry performance on the device level. The 28 nm LP Qualcomm “SHELBY” die is dual-sourced from both Samsung and TSMC, and is the primary die in the MDM9215 4G/LTE modem used in several smartphones. This represents a unique case of leading technology, available to the public, to qualify for electrical performance on the device level using the AFP and the corresponding physical differences using SEM and TEM. These advanced FA techniques were employed and were able to identify manufacturing differences between foundries. They were then used to relate the physical variations with the electrical device performance. The HG11-N3877 fabricated by TSMC and the HG11-N9204 fabricated by Samsung were the subjects of this comparison (see Error! Reference source not found.). The investigation located spatial and geometric variations of the SRAM devices using cross sectioning and TEM imaging. This was followed by Electrical Characterization of multiple SRAM Cells using the AFP. The electrical measurements showed clear differences in device parameters. These differences highlight manufacturing process differences between the two companies that could directly relate to chip performance.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5886
Author(s):  
Mahmoud Al Ahmad ◽  
Rasha A. Nasser ◽  
Lillian J. A. Olule ◽  
Bassam R. Ali

Accurately classifying the innate immune players is essential to comprehensively and quantitatively evaluate the interactions between the innate and the adaptive immune systems. In addition, accurate classification enables the development of models to predict behavior and to improve prospects for therapeutic manipulation of inflammatory diseases and cancer. Rapid development in technologies that provide an accurate definition of the type of cell in action, allows the field of innate immunity to the lead in therapy developments. This article presents a novel immunophenotyping technique using electrical characterization to differentiate between the two most important cell types of the innate immune system: dendritic cells (DCs) and macrophages (MACs). The electrical characterization is based on capacitance measurements, which is a reliable marker for cell surface area and hence cell size. We differentiated THP-1 cells into DCs and MACs in vitro and conducted electrical measurements on the three cell types. The results showed average capacitance readings of 0.83 µF, 0.93 µF, and 1.01 µF for THP-1, DCs, and MACs, respectively. This corresponds to increasing cell size since capacitance is directly proportional to area. The results were verified with image processing. Image processing was used for verification because unlike conventional techniques, especially flow cytometry, it avoids cross referencing and by-passes the limitation of a lack of specificity of markers used to detect the different cell types.


Author(s):  
Terence Kane

Abstract A 300mm wafer atomic force prober (AFP) has been installed into IBM’s manufacturing line to enable rapid, nondestructive electrical identification of defects. Prior to this tool many of these defects could not detected until weeks or months later. Moving failure analysis to the FAB provides a means of complementing existing FAB inspection and defect review tools as well as providing independent, non-destructive electrical measurements at an early point in the manufacturing cycle [1] Once the wafer sites are non destructively AFP characterized, the wafer is returned to its front opening unified pod (FOUP) carrier and may be reintroduced into the manufacturing line without disruption for further inspection or processing. Whole wafer atomic force probe electrical characterization has been applied to 32nm, 28nm, 20nm and 14nm node technologies. In this paper we explore the cost benefits of performing non-destructive AFP measurements on whole wafers. We have found the methodology of employing a whole wafer AFP tool complements existing in-line manufacturing monitoring tools such as brightfield/dark field optical inspection, SEM in-line inspection and in-line E-beam voltage contrast inspection (EBI).


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1684
Author(s):  
Farah Asyikin Abd Rahman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Ungku Anisa Ungku Amirulddin ◽  
Miszaina Osman

The fourth rail transit is an interesting topic to be shared and accessed by the community within that area of expertise. Several ongoing works are currently being conducted especially in the aspects of system technical performances including the rail bracket component and the sensitivity analyses on the various rail designs. Furthermore, the lightning surge study on railway electrification is significant due to the fact that only a handful of publications are available in this regard, especially on the fourth rail transit. For this reason, this paper presents a study on the electrical performance of a fourth rail Direct Current (DC) urban transit affected by an indirect lightning strike. The indirect lightning strike was modelled by means of the Rusck model and the sum of two Heidler functions. The simulations were carried out using the EMTP-RV software which included the performance comparison of polymer-insulated rail brackets, namely the Cast Epoxy (CE), the Cycloaliphatic Epoxy A (CEA), and the Glass Reinforced Plastic (GRP) together with the station arresters when subjected by 30 kA (5/80 µs) and 90 kA (9/200 µs) lightning currents. The results obtained demonstrated that the GRP material has been able to slightly lower its induced overvoltage as compared to other materials, especially for the case of 90 kA (9/200 µs), and thus serves better coordination with the station arresters. This improvement has also reflected on the recorded residual voltage and energy absorption capacity of the arrester, respectively.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hee-Gyeong Yi ◽  
Hyeonji Kim ◽  
Junyoung Kwon ◽  
Yeong-Jin Choi ◽  
Jinah Jang ◽  
...  

AbstractRapid development of vaccines and therapeutics is necessary to tackle the emergence of new pathogens and infectious diseases. To speed up the drug discovery process, the conventional development pipeline can be retooled by introducing advanced in vitro models as alternatives to conventional infectious disease models and by employing advanced technology for the production of medicine and cell/drug delivery systems. In this regard, layer-by-layer construction with a 3D bioprinting system or other technologies provides a beneficial method for developing highly biomimetic and reliable in vitro models for infectious disease research. In addition, the high flexibility and versatility of 3D bioprinting offer advantages in the effective production of vaccines, therapeutics, and relevant delivery systems. Herein, we discuss the potential of 3D bioprinting technologies for the control of infectious diseases. We also suggest that 3D bioprinting in infectious disease research and drug development could be a significant platform technology for the rapid and automated production of tissue/organ models and medicines in the near future.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1899
Author(s):  
Mattia Pizzone ◽  
Maria Grazia Grimaldi ◽  
Antonino La La Magna ◽  
Neda Rahmani ◽  
Silvia Scalese ◽  
...  

Molecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behaviour once deposited. It is already known that the molecules form a self-assembled monolayer over the surface of the sample, but little is known about the role and behaviour of possible multiple layers that could be deposited on it after extended deposition times. In this work, we investigate the molecular surface coverage over time of diethyl-propyl phosphonate on silicon, by employing high-resolution morphological and electrical characterization, and examine the effects of the post-deposition surface treatments on it. We present these data together with density functional theory simulations of the molecules–substrate system and electrical measurements of the doped samples. The results allow us to recognise a difference in the bonding types involved in the formation of the molecular layers and how these influence the final doping profile of the samples. This will improve the control on the electrical properties of MD-based devices, allowing for a finer tuning of their performance.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1380-1383
Author(s):  
Guang Li Yin

Safety problem is one of the most attention and concern of driving. This paper in the high-speed on the road cars and car, car and road communications, vehicle real-time status, through the network information service system integration on a platform, on the use of related technologies are analyzed, the design of the software system based on SOA architecture.Keywords: network, GPS module, SOA cross platformI. IntorductionWith the development of science and technology and the improvement of people's living standard, Car popularity rate is high, it's hard to believe, families has two or three car. Whether it is the bus or private car is such rapid development, this will bring a lot of problems in road traffic, such as traffic congestion, traffic accident. These problems affect the normal life and travel, it is necessary to carry out management and provide information service for road use advanced technology. Using mobile phone GPS positioning module can obtain the vehicle speed and the basic information, through processing and optimization of information service system, the analysis of data useful, so as to divert traffic, both for the convenience of the user, but also improve the expressway management ability.


2020 ◽  
Vol 214 ◽  
pp. 02015
Author(s):  
Jiahao Zhang

In recent years, increasingly advanced technology infrastructure leads to an extraordinary growth of Internet users. By virtue of the explosive growth of the entire Internet industry, the online game industry has shown a rapid development trend, and the overall user scale of online games continues to expand. Meanwhile, the online game industry becomes a good investment market for investors to operate in. This article uses Blizzard as an example to analyze its investment value. Besides, the future trend of the video game industry is analyzed by using the SWOT-model and forecasting calculation data. The result shows that based on the current development of the game industry environment and the same companies in the game industry, Activision Blizzard will have a steady increase in profits in the future. Therefore, it is worth being invested.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001937-001962
Author(s):  
Kai Liu ◽  
YongTaek Lee ◽  
HyunTai Kim ◽  
MaPhooPwint Hlaing ◽  
Susan Park ◽  
...  

In this paper, a 2-layer eWLB (embedded Wafer-Level BGA) is studied and its performance is compared with an equivalent 4-layer laminate package. Since eWLB package is processed by using lithographical method, design rules on width (W) and spacing (S) are much finer (usually 2–3 times finer) than those for laminate package. In other words, signal traces can be implemented in smaller fan-out regions. The smaller feature sizes for signal traces would end up with more metal loss per unit length. But as the signal traces can be implemented in smaller fan-out regions, overall trace-routing may be shorter, and equivalent insertion-loss may be achieved. In eWLB, the ground plane is closer to the signal traces. This actually helps to reduce cross-talk between wide I/O buses, as the electrical field is contained in a smaller region by the closer ground plane. Another key advantage from wafer-level package is a smoother metal surface, which greatly reduces the extra signal loss, due to surface-roughness effect, especially for higher-frequency and higher-speed applications. In addition, through-via structures for wafer-level package are typically 2–3 times smaller. This allows to implement power/ground planes in a more continuous way, achieving better resistance and inductance for power/ground nets. Overall electrical performance, which takes into account of all the impacts above, can be evaluated by signal-integrity analysis (E-diagram). Measurement data of a 2-layer eWLB package for a LPDDR application will be presented, which shows the comparable performance typically obtained from a 4-layer laminate package


Sign in / Sign up

Export Citation Format

Share Document