3D-Printed Samples For EXLO/INLO Practice and Training

Author(s):  
Zachary A. Giannuzzi ◽  
Lucille A. Giannuzzi ◽  
Kathleen A. Gehoski ◽  
William J. Mahoney

Abstract Practice and training samples have been manufactured using 3D-printing methods. These 3D-printed samples mimic the exact geometry of focused ion beam (FIB) prepared specimens and can be used to help master ex situ and in situ lift out micromanipulation methods. An additively manufactured array of samples yields numerous samples needed for repetition and deliberate practice necessary to master the lift out and micromanipulation steps. The 3D-printed samples are cost effective and negates expensive FIB time needed to prepare FIB specimens.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5032
Author(s):  
Alec Ikei ◽  
James Wissman ◽  
Kaushik Sampath ◽  
Gregory Yesner ◽  
Syed N. Qadri

In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d33 performance of up to 18 pC N−1, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process.


2007 ◽  
Vol 15 (6) ◽  
pp. 38-39
Author(s):  
D. J. MacMahon ◽  
E. Raz-Moyal

Semiconductor manufacturers are increasingly turning to Transmission Electron Microscopes (TEMs) to monitor product yield and process control, analyze defects, and investigate interface layer morphology. To prepare TEM specimens, Focused Ion Beam (FIB) technology is an invaluable tool, yielding a standard milled TEM lamella approximately 15 μm wide, 5 μm deep and ~100 nm thick. Several techniques have been developed to extract these tiny objects from a large wafer and view it in the TEM. These techniques, including ex-situ lift-out, H-bar, and in-situ lift-out, have different advantages and disadvantages, but all require painstaking preparation of one specimen at a time.


Author(s):  
Jian-Shing Luo ◽  
Hsiu-Ting Lee ◽  
San-Lin Liew ◽  
Ching-Shan Sung ◽  
Yi-Jing Wu

Abstract The use of in-situ lift-out combined with focused ion beam milling has become a favorable choice as it offers several indispensable advantages compared to the conventional mechanical and ex-situ lift-out sample preparation techniques. This paper discusses the procedures of the multiple-post in-situ lift-out grids preparation using a dicing saw. In addition, a real case is described to show that the multiple-post in-situ lift-out grids have been successfully applied to failure analysis. The multiple-post in-situ lift-out grids provide more positions and flatter surfaces for TEM sample mounting. The flat surface greatly increases the mounting efficiency and success rate. For the real case application, a thick Al fluoride oxide layer and Al corrosion were found above the Al bond pads, which had NOSP problem, and their neighbor area, respectively.


2020 ◽  
Vol 26 (2) ◽  
pp. 211-219
Author(s):  
Majid Ahmadi ◽  
Frans D. Tichelaar ◽  
Andreas Ihring ◽  
Michael Kunze ◽  
Sophie Billat ◽  
...  

AbstractIn microstructural corrosion studies, knowledge on the initiation of corrosion on an nm-scale is lacking. In situ transmission electron microscope (TEM) studies can elucidate where/how the corrosion starts, provided that the proper corrosive conditions are present during the investigation. In wet corrosion studies with liquid cell nanoreactors (NRs), the liquid along the electron beam direction leads to strong scattering and therefore image blurring. Thus, a quick liquid removal or thickness control of the liquid layer is preferred. This can be done by the use of a Peltier element embedded in an NR. As a prelude to such in situ work, we demonstrate the local wetting of a TEM sample, by creating a temperature decrease of 10 ± 2°C on the membrane of an NR with planar Sb/BiSb thermoelectric materials for the Peltier element. TEM samples were prepared and loaded in an NR using a dual-beam focused ion beam scanning electron microscope. A mixture of water vapor and carrier gas was passed through a chamber, which holds the micro-electromechanical system Peltier device and resulted in quick formation of a water layer/droplets on the sample. The TEM analysis after repeated corrosion of the same sample (ex situ studies) shows the onset and progression of O2 and H2S corrosion of the AA2024-T3 alloy and cold-rolled HCT980X steel lamellae.


2015 ◽  
Vol 21 (4) ◽  
pp. 1034-1048 ◽  
Author(s):  
Lucille A. Giannuzzi ◽  
Zhiyang Yu ◽  
Denise Yin ◽  
Martin P. Harmer ◽  
Qiang Xu ◽  
...  

AbstractTheex situlift out (EXLO) adhesion forces are reviewed and new applications of EXLO for focused ion beam (FIB)-prepared specimens are described. EXLO is used to manipulate electron transparent specimens on microelectromechanical systems carrier devices designed forin situelectron microscope analysis. A new patented grid design without a support film is described for EXLO. This new slotted grid design provides a surface for holding the specimen in place and also allows for post lift out processing. Specimens may be easily manipulated into a backside orientation to reduce FIB curtaining artifacts with this slotted grid. Large EXLO specimens can be manipulated from Xe+plasma FIB prepared specimens. Finally, applications of EXLO and manipulation of FIB specimens using a vacuum probe lift out method are shown. The vacuum probe provides more control for placing specimens on the new slotted grids and also allows for easy manipulation into a backside configuration.


2003 ◽  
Vol 794 ◽  
Author(s):  
T. E. Vandervelde ◽  
S. Atha ◽  
T. L. Pernell ◽  
R. Hull ◽  
J.C. Bean

ABSTRACTIn this study we use 25keV in situ and 30keV ex situ Ga+ focused ion beams (FIB) to locally modify the substrate before deposition to determine its affect on nucleation of MBE-grown Ge/Si islands. FIB processing may alter island formation in at least four ways: the surfactant effect of Ga+, doping effects of subsurface Ga+, crystalline damage, and surface roughening. To explore these possibilities, we milled square regions of increasing Ga+ doses and used AFM to monitor islanding in and around these regions. For in situ experiments, doses ranged from ∼1013 to 5×1017ions/cm2. We began to observe changes in island topology at doses as low as ∼1014ions/cm2. For doses of ∼1015ions/cm2 to ∼8×1016ions/cm2, implanted areas were surrounded by denuded zones that grew from ∼0.5 to 6 μm. Immediately inside the implanted area, island concentration (size and density) appeared to peak. At doses above ∼6×1016ions/cm2, Ga+ produced noticeable surface depressions, which were often surrounded by enhanced island densities, rather than a denuded zone. For ex situ FIB patterning, samples underwent both pre-growth cleaning and growth of a thin capping layer. Doses ranging from 7.5×1013 to ∼1017 ions/cm2 were used with varied capping layer thicknesses to study their combined affect on island nucleation. The results correspond well with in situ experiments for thin capping layers. Increased capping layer thickness show muted modifications for low Ga+ doses, while for higher doses trends similar to the in situ results are seen.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
H. Lorenz ◽  
C. Engel

Abstract Due to the continuously decreasing cell size of DRAMs and concomitantly diminishing thickness of some insulating layers new failure mechanisms appear which until now had no significance for the cell function. For example high resistance leakage paths between closely spaced conductors can lead to retention problems. These are hard to detect by electrical characterization in a memory tester because the involved currents are in the range of pA. To analyze these failures we exploit the very sensitive passive voltage contrast of the Focused Ion Beam Microscope (FIB). The voltage contrast can further be enhanced by in-situ FIB preparations to obtain detailed information about the failure mechanism. The first part of this paper describes a method to detect a leakage path between a borderless contact on n-diffusion and an adjacent floating gate by passive voltage contrast achieved after FIB circuit modification. In the second part we will demonstrate the localization of a DRAM trench dielectric breakdown. In this case the FIB passive voltage contrast technique is not limited to the localization of the failing trench. We can also obtain the depth of the leakage path by selective insitu etching with XeF2 stopped immediately after a voltage contrast change.


The Analyst ◽  
2021 ◽  
Author(s):  
Diwakar M. Awate ◽  
Cicero C. Pola ◽  
Erica Shumaker ◽  
Carmen L Gomes ◽  
Jaime Javier Juarez

Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach...


Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


Sign in / Sign up

Export Citation Format

Share Document