The Effects of Microstructure on Properties

2004 ◽  
pp. 39-46

Abstract In castings, microstructural features are products of metal chemistry and solidification conditions. The microstructural features, excluding defects, that most strongly affect the mechanical properties or aluminum castings are size, form, and distribution of intermetallic phases; dendrite arm spacing; grain size and shape; and eutectic modification and primary phase refinement. This chapter discusses the effects of these microstructural features on properties and methods for controlling them. The chapter concludes with a detailed examination of the refinement of hypereutectic aluminum-silicon alloys.

Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


2011 ◽  
Vol 690 ◽  
pp. 49-52 ◽  
Author(s):  
Magdalena Nowak ◽  
Nadendla Hari Babu

A novel effective grain refiner for hypo and hyper-eutectic Aluminium-Silicon alloys has been developed. The composition of the grain refiner has been optimized to produce a fine grain structure and finer eutectic. Effectiveness of grain size under various cooling conditions has also been investigated to simulate various practical casting conditions. For comparative purposes, a wide range of Al alloys have been produced with the addition of commercially available Al-5Ti-B master alloys. The results show that the addition of novel grain refiner reduces the grain size significantly. As a result of fine grains, the porosity in the solidified alloys is remarkably lower. A notable improvement in mechanical properties has also been observed.


2012 ◽  
Vol 12 (1) ◽  
pp. 81-86 ◽  
Author(s):  
D. Medlen ◽  
D. Bolibruchova

The Influence of Remelting on the Properties of AlSi6Cu4 Alloy Modified by Antimony The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eutectic phase particle shape and improve the mechanical properties of the final cast products and Al-Si alloys cast properties.


Author(s):  
Ivan Panov ◽  
Boyan Dochev ◽  
Desislava Dimova

The most commonly used elements to modify primary silicon crystals in the structure of hypereutectic aluminum-silicon alloys are phosphorus and sulfur. Phosphorus has been shown to have the highest coefficient of modification with respect to the primary silicon and is therefore a preferred modifier. There are also data on the positive effect of the modifiers Sb, Sr, Ti, and B on the silicon crystals in the structure of this type of alloys. The influence of the modifiers phosphorus, strontium, titanium and combinations of them on the size and shape of both the primary silicon crystals and the silicon crystals in the composition of the eutectic of the AlSi25 alloy has been studied in this work. Mechanical tests have been performed to determine both the strength and the plastic parameters of the investigated alloy (in unmodified and modified state). The classic for this type of alloys modifier - phosphorus - has been introduced into the melt by the ligature CuP10. Strontium has been introduced by the ligature AlSr10, and titanium - by the ligature AlTi5B1, the two ligatures in the form of rods. The investigated alloy has also been modified by combinations of the used modifiers: phosphorus and strontium, phosphorus and titanium.The influence of the used modifiers on the structure and mechanical properties of AlSi25 alloy has been discussed.


2020 ◽  
Vol 17 (2) ◽  
pp. 206
Author(s):  
Ahmad Zubair Sultan ◽  
Abram Tangkemanda ◽  
Irsyad Amru Djafar ◽  
Rio Triwanto Rantepadang

: The use of aluminum silicon alloys as automotive components is growing along with the growing desire to reduce the weight of the components used. However, aluminum alloys still have low mechanical properties, so other processes are needed to increase their hardness, one of them by heat treatment process. This alloy material is commonly used for motorcycle piston. This study aims to determine the effect of heat treatment on mechanical properties and microstructure of Aluminum Silicon A383 using the age hardening method with variations in aging temperature and different holding times. The testing of mechanical properties is done by testing the hardness and thermal conductivity. From the testing results, composition of aluminum alloy A383 composed of 73.30% aluminum, 22.08% silicon and highest hardness 105.9HB at an aging temperature 2000C within 30 minutes and the optimal value of the hardness and thermal conductivity of the aging variations performed are at temperature 2000C at holding time 88 minute. As the aging temperature increases, the hardness of aluminum increases and amount of silicon also increase. 


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040125
Author(s):  
Bui Thi Ngoc Mai ◽  
Nguyen Xuan Dong ◽  
Pham Mai Khanh ◽  
Tran Duc Huy

This paper discusses the influence of Vietnam rare earth (RE) with the composition of 69.4% Ce and 30.5% La (modification content of 4% and 6%) on the microstructure and mechanical properties of Al–5Zn–3.5Mg–1.2Cu alloy when the temperature modification is changed at [Formula: see text] in 150, 200, 250 s. By optical microscopy, the results showed that the microstructure of the modified sample is finer than the nonmodified sample. By the SEM and EDS analysis, at the grain boundaries of this alloy, [Formula: see text] and/or [Formula: see text] intermetallic phases appeared. The modified elements (La, Ce) in RE and aluminum were formed in the intermetallic [Formula: see text] and [Formula: see text] phases, which prevents the development of the dendritic [Formula: see text] phase. The result showed Al–5Zn–3.5Mg–1.2Cu alloy modified with 4% RE in 150 s which is the most optimal result, the grain size is [Formula: see text] and the hardness is 107 HB.


2015 ◽  
Vol 651-653 ◽  
pp. 796-801 ◽  
Author(s):  
Andreas Hütter ◽  
Wilfried Huemer ◽  
Claudia Ramskogler ◽  
Fernando Warchomicka ◽  
Aymen Lachehab ◽  
...  

In recent years an interest in magnesium and magnesium alloys not only for the automotive industry but also for medical applications was increasing due to the low density and good specific strength. Magnesium alloys show good castability but lower ductility and strength than wrought materials. For this reason, refinement of grains and homogenous distribution of intermetallic phases are needed to improve formability and mechanical properties. On the other hand, the degradation of the material by corrosion is influenced by the grain size and phase distribution. This work investigates the microstructure evolution of pure Mg and magnesium alloy AZ91 by friction stir processing (FSP) technique. FSP experiments are carried out by constant force, optimizing the rotation and feed rate to obtain a homogenous microstructure, free of defects stir zone, good surface finishing and stable conditions during the process. The results show that the grain size is affected by the spindle speed. Increasing the number of passes reduces also the size of the grains and the intermetallic phases in the AZ91 alloy. The overlapping of passes between overlapping ratio 0.5 to 1 determines an uniform depth of the stir zone over a larger surface area.Hardness measurements are performed to evaluate the influence of FSP parameters on the mechanical properties. The degradation rate of the studied FSP Mg alloys is determined by hydrogen evolution in corrosion immersion tests, which depend strongly on the phase distribution and grain size.


Author(s):  
Sriram Praneeth Isanaka ◽  
Sreekar Karnati ◽  
Frank Liou

Successful additive manufacturing (AM) of aluminum alloys has been demonstrated using a number of processes, which is the focus of this article. Utilization of some aluminum alloys with relatively low reflectivity coupled with process optimization to achieve high retained energy densities enabled the successful deposition of aluminum–silicon alloys that were previously manufactured exclusively using casting processes. The design flexibility of AM processes coupled to the ability to direct energy and material to specific spatial locations has also been used to demonstrate the ability to join dissimilar aluminum alloys, with applicability toward functional grading and repair. Researchers have shown that the additively manufactured alloys exhibit comparable and, in cases, improved mechanical properties to their conventional counterparts with highly refined grain structures. Elaborate investigations into their microstructures to determine the causality of the mechanical properties are also discussed in detail. Understanding the relationship between these desired high retained energy densities and the factors favoring them, including the alloy composition, input energy, and the deposition speed and volume, plays a pivotal role toward successful additive manufacture. With further process parameter optimization and the development of raw material supply chains that can create and tailor alloys based on need, the applicability of these AM processes can be adapted to many more aluminum alloys and can be tailored to serve a wide range of industries.


Sign in / Sign up

Export Citation Format

Share Document