Stabilization of Sulfate-Containing Soil by Cementitious Mixtures Mechanical Properties

Author(s):  
Lan Wang ◽  
Amitava Roy ◽  
Roger K. Seals ◽  
John B. Metcalf

Winn Rock (CaSO4) gravel from a quarry in Winn Parish in north Louisiana was used extensively as a surface course for local parish roads. Stabilization of these roads with Type I portland cement followed by an overlay of asphaltic concrete resulted in heaving. A study was undertaken to investigate the cause or causes of the expansion as well as to identify an alternate means of stabilization. Specimens of representative soil from the affected area were stabilized in the laboratory using various cementitious materials and were cured using a variety of methods. The mix contained 5% to 20% cementitious material. The cementitious materials were Type I portland cement, lime, and supplementary cementing materials such as granulated blast furnace slag (BFS), Class C fly ash (CFA), silica fume, and an amorphous silica (AS). The unconfined compressive strength of the stabilized soil was determined. The effect of size fractions other than the gravel on the expansion was assessed, and the expansion of the specimens over time was monitored. The cement and BFS mixtures almost doubled the compressive strength of the specimens compared with portland cement alone. The finer size fractions were responsible for expansion. The magnitude of expansion was directly proportional to the amount of Type I portland cement, the amount of available moisture, and the curing temperature. Replacement of a part of the portland cement by BFS significantly reduced the amount of expansion even at the highest moisture content. No expansion was detected when CFA and AS partially replaced the cement.

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4248
Author(s):  
Xingxing Li ◽  
Ying Ma ◽  
Xiaodong Shen ◽  
Ya Zhong ◽  
Yuwei Li

The utilization of coral waste is an economical way of using concrete in coastal and offshore constructions. Coral waste with more than 96% CaCO3 can be ground to fines and combined with supplementary cementitious materials (SCMs) such as fly ash, silica fume, granulated blast furnace slag in replacing Portland cement to promote the properties of cement concrete. The effects of coral sand powder (CSP) compared to limestone powder (LSP) blended with SCMs on hydration and microstructure of mortar were investigated. The result shows CSP has higher activity than LSP when participating in the chemical reaction. The chemical effect among CSP, SCMs, and ordinary Portland cement (OPC) results in the appearance of the third hydration peak, facilitating the production of carboaluminate. CSP-SCMs mortar has smaller interconnected pores on account of the porous character of CSP as well as the filler and chemical effect. The dilution effect of CSP leads to the reduction of compressive strength of OPC-CSP and OPC-CSP-SCMs mortars. The synergic effects of CSP with slag and silica fume facilitate the development of compressive strength and lead to a compacted isolation and transfer zone (ITZ) in mortar.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1789 ◽  
Author(s):  
Yonghui Lin ◽  
Dongqiang Xu ◽  
Xianhui Zhao

Soda residue (SR), the solid waste of Na2CO3 produced by ammonia soda process, pollutes water and soil, increasing environmental pressure. SR has high alkalinity, and its main components are Ca(OH)2, NaCl, CaCl2, CaSO4, and CaCO3, which accords with the requirements of being an alkali activator. The aim of this research is to investigate the best proportion of SR addition and the contribution of individual chemical components in SR to SR- activated ground granulated blast furnace slag (GGBS) cementitious materials. In this paper, GGBS pastes activated by SR, Ca(OH)2, Ca(OH)2 + NaCl, Ca(OH)2 + CaCl2, Ca(OH)2 + CaSO4, and Ca(OH)2 + CaCO3 were studied regarding setting time, compressive strength (1 d, 3 d, 7 d, 14 d, 28 d), hydration products, and microstructure. The results demonstrate that SR (24%)-activated GGBS pastes possess acceptable setting time and compressive strength (29.6 MPa, 28 d), and its hydration products are calcium silicate hydrate (CSH) gel, calcium aluminum silicate hydrates (CASH) gel and Friedel’s salt. CaCl2 in SR plays a main role in hydration products generation and high compressive strength of SR- activated GGBS pastes.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


2019 ◽  
Vol 26 (1) ◽  
pp. 449-464 ◽  
Author(s):  
Mifeng Gou ◽  
Longfei Zhou ◽  
Nathalene Wei Ying Then

AbstractOne of the advantages of cement and the cement concrete industry in sustainability is the ability to utilize large amounts of industrial solid wastes such as fly ash and ground granulated blast furnace slag. Tailings are solid wastes of the ore beneficiation process in the extractive industry and are available in huge amounts in some countries. This paper reviews the potential utilization of tailings as a replacement for fine aggregates, as supplementary cementitious materials (SCMs) in mortar or concrete, and in the production of cement clinker. It was shown in previous research that while tailings had been used as a replacement for both fine aggregate and cement, the workability of mortar or concrete reduced. Also, at a constant water to cement ratio, the compressive strength of concrete increased with the tailings as fine aggregate. However, the compressive strength of concrete decreased as the replacement content of the tailings as SCMs increased, even whentailings were ground into smaller particles. Not much research has been dedicated to the durability of concrete with tailings, but it is beneficial for heavy metals in tailings to stabilize/solidify in concrete. The clinker can be produced by using the tailings, even if the tailings have a low SiO2 content. As a result, the utilization of tailings in cement and concrete will be good for the environment both in the solid waste processing and virgin materials using in the construction industry.


2010 ◽  
Vol 158 ◽  
pp. 1-11 ◽  
Author(s):  
Zi Qiao Jin ◽  
Xian Jun Lu ◽  
Shu Gang Hu

In order to stimulate the potential cementitious property of granulated blast furnace slag (GBFS), the ground GBFS sample (Wei Fang Iron and Steel Corporation, China) was activated by lime and gypsum under different dosages. The results showed that lime is an effective activator for the slag, and the optimum dosage of lime is about 10% (w/w) of the slag. At the optimum dosage of lime, the 28 days compressive strength of the lime-slag paste is higher than that of 32.5 ordinary Portland cement (OPC). But, the early age strength (3 and 7 days compressive strength) of the lime-slag paste is lower than that of the OPC. Addition of gypsum can effectively improve the early age strength of the lime-slag paste. At the ratio of gypsum:lime:slag of 8.2:9.2:82.6 (w/w), both the early and long-term compressive strengths of the gypsum-lime-slag paste are higher than that of the OPC. According to XRD, TG-DTA and SEM detections of the hydration products of the lime-slag paste, the gypsum-lime-slag paste and the OPC paste, it reveals that the hydration process of the GBFS-based cementitious material is different from the ordinary Portland cement and the presence of ettringite (AFt) contributes to the early age strength of the pastes. The major hydration product of the OPC paste (<7 days) were measured as ettringite (AFt), but the AFt phase was not detected in the hydration product of the lime-slag paste and the major hydration product of the lime-slag paste was determined as amorphous CSH gel. However, AFt was detected in the hydration products of the gypsum-lime-slag paste in the early stages of hydration, and the formation of AFt is favorable for the early strength improvement of the material.


2020 ◽  
Vol 38 (8) ◽  
pp. 868-875
Author(s):  
Marc Antoun ◽  
Frédéric Becquart ◽  
Najib Gerges ◽  
Georges Aouad

Municipal solid waste incineration generates large quantities of bottom ash that should be recycled. Current use of municipal solid waste incineration bottom ash (MSWI-BA) in cementitious materials is mostly in Ordinary Portland Cement (OPC). This paper considers using MSWI-BA as sand substitution in Calcium Sulfoaluminate Cement (CSA) as an alternative to OPC. A comparison between OPC and CSA mortars containing 0–2 mm MSWI-BA is conducted. The MSWI-BA used was treated to remove the ferrous and non-ferrous metals in order to obtain a better mineral fraction. Different percentages (0%, 25%, 50%, 75%, and 100%) of standard sand were substituted by MSWI-BA based on equivalent volume. Experimental results showed that the compressive strength and porosity of the CSA mortars were superior to OPC after substitution at 1, 7, 28, and 90 days. The compressive strength of OPC mortars with 25% substitution decreased by 40% compared to 11% for CSA mortars at 90 days. This is due to the difference in pH between the two cement pastes as OPC in contact with the MSWI-BA leads to a reaction with the aluminum content which releases hydrogen gas, increases the porosity, and decreases the compressive strength.


This article investigates the slump and compressive strength of artificial lightweight aggregate concrete with Ground Granulated Blast Furnace Slag (GGBFS) and Silica Fume with glass fibres. The increase in usage of cement in the construction industry is a concern for ecological deterioration, in this view; artificial aggregates was manufactured with major amount of fly ash and replacement of cement with various industrial by-products in concrete. An optimum level of GGBFS from 10 to 50% and Silica Fume from 2 to 6% with addition of glass fibres was assessed based on compressive strength values. The compressive strength was conducted for 7 and 28Days of water curing on M30 grade lightweight concrete with constant water to cement ratio as 0.45 and 0.2% of Master Gelenium super plasticizer. The conclusions achieved from the compressive strength of concrete containing GGBFS and Silica Fume was increased as the curing time increases. As a result lightweight aggregate concrete with a cement content of 226 kg/m3 develops 37.3 N/mm2 compressive strength.


10.29007/81v5 ◽  
2018 ◽  
Author(s):  
Ashika Shah ◽  
Indrajit Patel ◽  
Jagruti Shah ◽  
Gaurav Gohil

In the production of Self Compacting concrete (SCC), the use of quaternary blend of supplementary cementitious materials (SCM’s) has not found enough applications. For this purpose, an effort has been done to present a mix design for M60 grade and M80 grade SCC with quaternary blending of fly ash(FA), ground granulated blast furnace slag (GGBS), silica fume (SF) in accordance with EFNARC guidelines. Findings: In this study, cement has been replaced with SCM’s from 30% to 50%. Fresh properties of concrete were tested for slump flow, T50 test and U box. The hardened properties of concrete were tested for compressive strength and durability. The tests were performed for 7, 28, 56 and 91 days. The results indicate that the use of quaternary blend has improved the workability, compressive strength and durability properties of specimens than the control specimen. Application: The primary contribution is to fill the congestedreinforcement and increase the durability and life span of the structure.


2019 ◽  
Vol 258 ◽  
pp. 01001
Author(s):  
Gidion Turuallo ◽  
Harun Mallisa

This research aims to determine the effect of fly ash percentage as a part replacement of Portland cement and curing temperatures to the early age strength of concrete. The percentages of fly ash used were 0, 10 and 15% by cement weight. The cured temperatures were 25, 30 dan 50°C. The concrete specimens were cubes of 150 x 150 x 150 mm3. The cubes, which were cured at 25°C, placed in water tank, while those cured at 30 and 50°C cured in oven until 7 days and then continued in water. The testing was conducted at ages 3, 7, 14 dan 28 days. The results showed that at early ages, the strength of concrete without fly ash cured at 25°C were higher than that of fly ash concrete. The higher level replacement of cement with fly ash, the lower strength of concrete obtained. The higher the curing temperature at earlier age resulted the higher the strength of concrete. The strength of concretes with 10% of fly ash cured at 25, 30 and 50°C at age three days were 15.111, 15.481 and 16.296 MPa respectively. Conversely, the strength of concrete that of cured at higher temperatures at ages 28 days, were lower than that of concretes cured at lower temperature. The results of this research also showed that fly ash could improve the workability of concrete.


Sign in / Sign up

Export Citation Format

Share Document