scholarly journals Effect of Rhizopus oryzae Fermentation on Kenaf-Based Polylactic Acid’s Monomer

1970 ◽  
Vol 12 (4) ◽  
Author(s):  
Nur Aimi Mohd Nasir ◽  
Mohd Adlan Mustafa Kamalbahrin ◽  
Nurhafizah Mohamad ◽  
Hazleen Anuar ◽  
Maizirwan Mel ◽  
...  

Kenaf biomass is the potential as raw materials used to produce polylactic acid's monomer which is lactic acid via fermentation by Rhizopus oryzae. Kenaf biomass' structure is complex due to its lignin and cellulose content. This matter had encouraged it to undergo pre- treatment process as the initial step before fermentation process can be done. In this paper, kenaf biomass was treated with dilute sulphuric acid (H2SO4) to hydrolyze the cellulose content in it as well as to convert the cellulose into glucose- a carbon source for Rhizopus to grow. Then, the fermentation process was carried out in shake flask for 3 days at pH 6. Several conditions for fermentation process had been chosen which were 25oC at 150 rpm, 25 oC at 200 rpm, 37 oC at 150 rpm and 37oC at 200 rpm. In this fermentation process, 0.471 g/L, 0.428 g/L, 0.444 g/L and 0.38 g/L of lactic acid was produced respectively. Sample at 25oC at 200 rpm produced maximum amount of lactic acid compared to others.ABSTRAK: Biojisim kenaf berpotensi sebagai bahan mentah dalam penghasilan monomer asid polylactic (poliester alifatik termoplastik diterbitkan daripada sumber boleh diperbaharu seperti kanji jagung) yang merupakan asid laktik menerusi penapaian oleh Rhizopus oryzae (sejenis fungus yang hidup dalam jirim organik yang telah mati). Struktur biojisim kenaf adalah kompleks disebabkan kandungan lignin dan selulosanya. Hal ini menyebabkan ia perlu melalui proses pra-rawatan sebagai langkah awal sebelum proses penapaian dijalankan. Dalam kertas ini, biojirim kenaf dirawat dengan asid sulfurik (H2SO4) yang dicairkan untuk menghidrolisis kandungan selulosa di dalamnya di samping menukar selulosa menjadi glukosa - sumber karbon bagi tumbesaran Rhizopus. Kemudian, proses penapaian dijalankan di dalam kelalang goncang selama 3 hari pada pH 6. Beberapa ciri proses penapaian telah dipilih iaitu 25 oC pada 150 rpm, 25 oC pada 200 rpm, 37 oC pada 150 rpm dan 37 oC pada 200 rpm. Dalam proses penapaian ini, 0.471 g/L, 0.428 g/L, 0.444 g/L dan 0.38 g/L asid laktik dihasilkan secara berturut. Sampel pada 25oC pada 200 rpm menghasilkan kadar asid laktik yang maksimum dibandingkan dengan yang lainnya.KEY WORDS :Kenaf biomass, pre-treatment, lactic acid, Rhizopus oryzae, fermentation

2018 ◽  
Vol 40 (4) ◽  
pp. 50-57
Author(s):  
А.A. Dolinskyi ◽  
O. M. Obodovych ◽  
V.V. Sydorenko

The paper presents an overview of bioetanol production technologies. It is noted that world fuel ethanol production in 2017 amounted to more than 27,000 million gallons (80 million tons). Eight countries, namely the USA, Brazil, the EU, China, Canada, Thailand, Argentina, India, together produce about 98% of bioethanol. In Ukraine, the volume of bioethanol production by alcoholic factories in recent years has been gradually increasing and amounted to 2,992.8 ths. dal in 2017. The production of ethanol as an additive to gasoline, with regard to the raw materials used, as well as the corresponding technologies, is historically divided into three generations. The first generation of biofuels produced from food crops rich in sugar or starch is currently dominant. Production of advanced biofuels from non-food crop feedstocks is limited. Output is anticipated to remain modest in the short term, as progress is needed to improve technology readiness. The main stages of bioethanol production from lignocellulosic raw materials are pre-treatment, enzymatic hydrolysis and fermentation. The pre-treatment process aims to reduce of sizes of raw material particles, provision of the components exposure (hemicellulose, cellulose, starch), provision of better access for the enzymes (in fermentative hydrolysis) to the surface of raw materials, and reduction of crystallinity degree of the cellulose matrix. The pre-treatment process is a major cost component of the overall process. The pre-treatment process is highly recommended as it gives subsequent or direct yield of the fermentable sugars, prevents premature degradation of the yielded sugars, prevents inhibitors formation prior hydrolysis and fermentation, lowers the processing cost, and lowers the demand of conventional energy in general. From the perspective of efficiency, promising methods of pre-treatment of lignocellulosic raw materials to hydrolysis are combined methods combining mechanical, chemical and physical mechanisms of influence on raw materials. One method that combines several physical effects on a treated substance is the discrete-pulsed energy input (DPIE) method. The DPIE method can be applied in the pre- treatment of lignocellulosic raw material in the technology bioethanol production for intensifying the process and reducing energy consumption. Ref. 15, Fig. 2.


2008 ◽  
Vol 71 (8) ◽  
pp. 1724-1733 ◽  
Author(s):  
SUSAN ROUSE ◽  
DOUWE VAN SINDEREN

Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
Imam Sofi'i ◽  
Sumardi Hadi Sumarlan ◽  
Wignyanto Wignyanto ◽  
Bambang Susilo

Microalgae are single cell organisms that have the potential to be developed as feedstock for biodiesel oil. One of the problems of using microalgae as feedstock for biodiesel is in the extraction process. Microalgae extraction requires considerable cost. The purpose of this study was to determine the effect of ohmic heating as a method of pretreatment in microalgae oil extraction. The raw materials used were microalgae paste diluted in two levels cell density, 20 g/L, and 30 g/L. The pretreatment using alternating current (AC) electric with two voltage levels (55 V and 110 V), and the duration of pretreatment was 30 seconds and 60 seconds. The next step was drying and extracting microalgae by solvent extraction method of n-hexane. The results showed that the highest oil yields (14.88%) were obtained by cell density treatment 20 g/L, done for 60 seconds of pretreatment and 110 V voltage. This result was higher than without pretreatment, so the use of pretreatment by ohmic heating can improve extracted oil yield than without pretreatment.


1991 ◽  
Vol 24 (12) ◽  
pp. 33-42 ◽  
Author(s):  
A. B. Larsen ◽  
F. H. Funch ◽  
H. A. Hamilton

Novo Nordisk is one of the world's largest producers of enzymes, insulin and biopharmaceuticals. This production is based mainly on biotechnology and fermentation processes. The waste from the fermentation process is non-toxic, but due to the high content of nitrogen and phosphorus the waste can cause eutrophication if it is discharged in the marine environment. Novo Nordisk has developed a process in which the fermentation sludge, which constitutes a large part of the waste, is used as an organic fertilizer - NOVOsludge - in agriculture. The total amount of sludge is 500,000 m3/year, corresponding to 800,000 kg of nitrogen and 300,000 kg of phosphorus. Around 10,000 hectares of farmland benefit from this. Since a great proportion of the raw materials used in fermentation are based on agricultural products, this use is an example of re-cycling of nutrients. Investigations of the uptake of the nutrients in different types of crops are made in order to develop still more efficient uses. The system which has been developed has also contributed to new rules for the utilization of organic waste material.


2020 ◽  
Vol 50 (4) ◽  
pp. 749-762
Author(s):  
Vladimir Kondratenko ◽  
Natalia Posokina ◽  
Ol’ga Lyalina ◽  
Anastasiay Kolokolova ◽  
Sergey Glazkov

Introduction. Fermentative processing of plant raw materials is traditionally carried out using native (epiphytic) microflora, which is located on the surface and represented by lactic acid microorganisms. During this process, the carbohydrates in the raw material are metabolized into lactic acid. This process does not always result in optimal product quality as the raw material often lacks carbohydrates, the optimal conditions for the development of the target microflora are hard to achieve, the microflora might be inhibited by contaminants, etc. Lactic acid microbial consortia can act as a good alternative to spontaneous fermentation of cabbage as this method creates good conditions for the microbial synergistic interaction. Such fermentation process can be controlled by adjusting the carbohydrate composition of the substrate. The research objective was to develop an analytical approach to determine the minimum required degree of change in the native carbohydrate composition of substrate that would ensure the synergy of lactic acid microorganisms. Study objects and methods. The fermentation process was performed using white cabbage of Slava variety and such strains of lactic acid microorganisms as Lactobacillus casei VCM 536, Lactobacillus plantarum VCM B-578, and Lactobacillus brevis VCM B-1309, as well as their paired consortia. The raw material was subjected to grinding, and the epiphytic microflora was removed to create optimal conditions for the development of the lactic acid microflora. Results and discussion. The study made it possible to define the dynamics of carbohydrate fermentation in white cabbage by various strains of lactic bacteria and their paired consortia during processing. Mathematical models helped to describe the dynamics of glucose and fructose fermentation. The experiment also demonstrated the changes that occurred in the interaction within the paired consortia during fermentation. The paper introduces a new approach to determining the minimum required degree of change in the native carbohydrate composition required to ensure synergy of lactic acid microorganisms in paired consortia. Conclusion. The research defined the necessary amounts of carbohydrate needed to shift the integral factor of mutual influence towards sustainable synergy for three paired consortia. Consortium L. brevis + L. plantarum + 3.65 g/100 g of fructose proved to be the optimal variant for industrial production of sauerkraut from white cabbage of Slava variety. The developed approach can improve the existing industrial technologies of fermentation and create new ones.


Author(s):  
NE Posokina ◽  
AI Zakharova

Introduction: Fermentation is a biotechnological process of preserving the biological potential of raw materials and transforming them in order to impart new organoleptic properties and to increase nutritional value of the product allowing diversification of daily meals; thus, in some countries fermented products make up a significant part of the human diet. Despite the fact that fermented products are very useful for humans, the fermentation process itself remained rather complicated for reproduction during a long time. Currently, starter cultures are used in industrial production of fermented food products enabling the production of foodstuffs with a guaranteed range of consumer properties. Such species of lactic acid bacteria as Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella play the main role in production of fermented food and drinks while L. mesenteroides plays the primary role in starting fermentation of many types of plant materials including cabbage, beet, turnip, cauliflower, green beans, chopped green tomatoes, cucumbers, olives, etc. Objective: To control and manage the industrial fermentation process, it is important to determine the main processes occurring at different stages and the types of lactic acid microorganisms responsible for initiation, continuation and completion of the process. Results: This review shows that, despite the variety of fermentable vegetables, L. mesenteroides species of lactic acid bacteria are of particular importance at the primary heteroenzymatic stage since during this very period the processed raw materials form conditions for inhibiting pathogenic and facultative pathogenic microflora and create optimal environment for subsequent development of targeted microorganisms determining the quality of finished products. Conclusions: When developing food technology, L. mesenteroides species of lactic acid bacteria must be an indispensable component of industrial starter cultures for obtaining final products of consistently high quality.6


2012 ◽  
Vol 200 ◽  
pp. 312-315
Author(s):  
Ping Zhang ◽  
Bing Tao Wang ◽  
De Gao ◽  
Li Hua Wen

The paper describes the production and the mechanical characteristics of composites made completely from renewable raw materials, the corn straw fiber and the biodegradable plastic, poly(lactic acid). The effect of straw fiber content on the mechanical properties of the composites was studied and the optimum mass fraction was 15%. To enhance the mechanical properties of the composites, two different methods were tested. Maleic anhydride as the compatilizer was introduced into the composites but the changes of the mechanical properties were small. While the other method, pre-treatment for straw fiber before blending, the mechanical properties increased obviously. The tensile strength and the impact strength were 35.6 MPa and 1.67 kJ/m2, respectively.


2019 ◽  
pp. 96-100
Author(s):  
V. V. Kondratenko ◽  
N. E. Posokina ◽  
J. A. Semenova

Relevance. Cabbage is one of the most popular products, which is mainly fermented with the addition of various vegetables. When fermentation is not only the original nutrients such as vitamin C, amino acids, dietary fibers, etc., but also develop functional microorganisms such as lactic acid bacteria. Fermentation has an important effect on the quality and taste of cabbage, so it is important to study the fermentation process, microbial diversity and changes in nutrients and chemical elements in the fermentation process. L. mesenteroides is considered to be the dominant species on heterofermentative early stages of fermentation. However, there is little information on the diversity of species and strains of Leuconostoc involved in fermentation of sauerkraut. Studies that used traditional biochemical methods to study fermentation of sauerkraut showed that four main types of lactic acid bacteria were involved in the fermentation process: Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus and Lactobacillus brevis. Taking into account the importance of two-stage fermentation of vegetable raw materials in order to create optimal conditions for the development of the "main" pool of lactic acid microorganisms at the first stage, it becomes urgent to conduct a complex of studies aimed at reproducing the "natural" process in which the main role is played by bacteria of the genus Leuconostoc mesenteroides at the second stage – monocultures of lactic acid microorganisms and their consortia.Methods. The paper studies the dynamics of the type of interaction of lactic acid microorganisms in paired consortiums on model media pretreated by the culture of the species Leuconostoc mesenteroides, at the main stage of step fermentation of white cabbage of the "Parus" variety.Results. It is established that the sum of the criteria, the consortium "L. mesenteroides \ L. casei + L. plantarum" demonstrates the most pronounced advantage compared with monoculture cultivation of appropriate format of pseudotensorial; despite the pronounced synergy in the cultivation of the consortium "L. mesenteroides \ L. brevis + L. plantarum", the dynamics of the comparison index on the rate of increase in the concentration of microorganisms indicates the need for additional research. 


2018 ◽  
Vol 20 (1) ◽  
pp. 274-278
Author(s):  
ALI SETYAYUDI ◽  
KRISNAWATI KRISNAWATI ◽  
RYKE NANDINI

Setyayudi A, Krisnawati, Nandini R. 2019. Short Communication: Exploration of bidara laut (Strychnos lucida) parent trees in Gunung Tunak Ecotourism Park, West Nusa Tenggara, Indonesia. Biodiversitas 20: 274-278. Bidara laut (Strychnos lucida R. Brown) is one of the widely used medicinal plants. There is a bidara laut wood processing industry in West Nusa Tenggara that produces drinking cups called ‘health cups’ utilizing bidara laut. All raw materials used for the production of health cups are, however, obtained from bidara laut stands in forest areas, which may cause the extinction of this medicinal plant species if the highly intensive raw material harvesting in the forest is not supported with cultivation of this plant species. To preserve this plant species, the Institute for Research and Development of Non-Timber Forest Products Technology (NTFP-RDI) has carried out breeding activities by developing a collection garden of this species from the populations of Bali and West Nusa Tenggara (Lombok and Sumbawa Islands). The initial step carried out was the exploration of the parent trees followed by collection of generative materials (seeds) and nurseries. Exploration of bidara laut parent trees on Lombok Island was carried out in Gunung Tunak Ecotourism Park using a purposive sampling method, followed by collection of fruits to obtain seed propagating materials for establishment of seedling nurseries. Twenty-five parent trees were identified with average height of nine m, stem diameter of 24 cm and stem straightness scales of 1-3. The average seed produced was 413 seeds tree-1. Three parent trees were selected based on the highest seed germination rates, namely parent trees number 6, 14 and 20. This result provides useful information for the next bidara laut breeding activities.


Sign in / Sign up

Export Citation Format

Share Document