scholarly journals PERANCANGAN STRUKTUR ROAD BIKE FRAME MENGGUNAKAN ALUMINIUM 6063 MELALUI PROSES OPTIMALISASI PERLAKUAN PANAS

2021 ◽  
Vol 5 (2) ◽  
pp. 49
Author(s):  
Jaller Gilang Anarkhi Paksi ◽  
Ilham Aditya Cristian Permana Putra ◽  
Reinaldy Indriansyah

Pada penelitian ini dilakukan perancangan dan simulasi pada rangka sepeda menggunakan Solidworks 2017. Dilakukan pula peningkatan sifat mekanis material aluminium 6063 dengan menggunakan metode Precipitation Hardening. Pada proses Solution Treatment dengan temperatur 520℃ selama 50 menit, kemudian didinginkan menggunakan air dan dipanaskan kembali dengan proses Artificial Aging pada temperatur 155℃ dan 175℃ selama 8 jam. Hasil dari penelitian terjadi peningkatan sifat mekanis akibat penyebaran presipitasi Mg2Si semakin banyak dan merata setelah aluminium dilakukan proses Artificial Aging.  Pada proses Artificial Aging dengan temperatur 155℃ dihasilkan nilai tegangan tarik sebesar 199 MPa dan pada temperatur 175℃ dihasilkan sebesar 123 MPa. Hasil perancangan rangka sepeda menggunakan aluminium 6063-T6 didapati rangka sepeda aman dan layak digunankan dengan pembebanan maksimal sebesar 80 kg.

2016 ◽  
Vol 1133 ◽  
pp. 300-304
Author(s):  
Tahir Ahmad ◽  
Muhammad Kamran ◽  
Muhammad Faizan ◽  
Rafiq Ahmad ◽  
Bamban Ariwahjoedi ◽  
...  

The high specific strength, ease of working, good weldability and the ability to be precipitation strengthening have increased the demand of aluminium alloys in aerospace and automobile industries. In this research the effect of artificial aging/precipitation hardening on mechanical properties and microstructures of 6061 aluminum alloy weldments produced using gas tungsten welding (TIG) was studied. The artificial aging of welded alloy was carried out at temperatures varying from 150°C to 170°C for different period of time. The Vickers hardness and tensile test were carried out to evaluate the response of material to heat treatment. The experimental work showed that the maximum hardness and tensile strength of 6061 aluminum welded samples was achieved when aged at 170°C (after solution treatment) for 2 and 10 hours. Scanning electron microstructure analysis revealed that after solution treatment, when the samples were aged at 150-170°C, the Mg2Si precipitates present in the grains grows in size and develop stress in the grain and resulted increment in hardness.


2014 ◽  
Vol 794-796 ◽  
pp. 851-856
Author(s):  
Tadashiege Nagae ◽  
Nobuhiro Tsuji ◽  
Daisuke Terada

Accumulative roll-bonding (ARB) process is one of the severe plastic deformation processes for fabricating ultrafine grained materials that exhibit high strength. In aluminum alloys, aging heat treatment has been an important process for hardening materials. In order to achieve good mechanical properties through the combination of grain refinement hardening and precipitation hardening, an Al-4.2wt%Ag binary alloy was used in the present study. After a solution treatment at 550°C for 1.5hr, the alloy was severely deformed by the ARB process at room temperature (RT) up to 6 cycles (equivalent strain of 4.8). The specimens ARB-processed by various cycles (various strains) were subsequently aged at 100, 150, 200, 250°C, and RT. The hardness of the solution treated (ST) specimen increased by aging. On the other hand, hardness of the ARB processed specimen decreased after aging at high temperatures such as 250°C. This was probably due to coarsening of precipitates or/and matrix grains. The specimen aged at lower temperature showed higher hardness. The maximum harnesses achieved by aging for the ST specimen, the specimens ARB processed by 2 cycles, 4 cycles and 6 cycles were 55HV, 71HV, 69HV and 65HV, respectively. By tensile tests it was shown that the strength increased by the ARB process though the elongation decreased significantly. However, it was found that the tensile elongation of the ARB processed specimens was improved by aging without sacrificing the strength. The results suggest that the Al-Ag alloy having large elongation as well as high strength can be realized by the combination of the ARB process for grain refinement and the subsequent aging for precipitation hardening.


2020 ◽  
Vol 62 (9) ◽  
pp. 921-926
Author(s):  
Ion Dragoş Uţu ◽  
I. Mitelea ◽  
I. Bordeașu ◽  
F. Franţ

Abstract The investigated alloy is modified by casting with Sr in order to finish the eutectic silicon from microstructure and furthermore subjected to solution treatment followed by natural or artificial aging to improve the usage properties. Metallographic investigations and X-ray diffraction analyses showed that the heat treated microstructure consists of α- solid solution crystals with aluminum base, α + Si eutectic and intermetallic Al-Mn-Si phases. Mechanical tests and ultrasonic cavitation measurements showed that the highest mechanical characteristics and cavitation erosion resistance properties are obtained by applying the solution treatment followed by artificial aging. In contrast, electrochemical tests carried out in a saline concentration of 3.5 % NaCl in order to determine the corrosion rate, indicated that although there are no significant differences between the three structural states, a slight improvement was found in the corrosion behavior after applying the solution treatment followed by both natural and artificial aging. The phenomenon was demonstrated by shifting the values of corrosion currents from 2.66 μm/cm2 for the as-cast state, to 1.81 μm/cm2 and 1.52 μm/cm2, respectively, for the aged states. Finally, analysis of the cavitation eroded surface highlights the presence in the areas with α-solid solution structure of some flat-bottomed striped pinches, characteristic of fatigue fracture and of microcraters in the micro-zones where the fragile intermetallic phases were dislocated.


2016 ◽  
Vol 850 ◽  
pp. 511-518 ◽  
Author(s):  
Hai Jun Liu ◽  
Lie Jun Li ◽  
Jian Wei Niu ◽  
Ji Xiang Gao ◽  
Chuan Dong Ren

The effects of Mg and Cu additions with different contents on the mechanical properties of Al-Si alloy prepared by indirect squeeze casting have been experimentally investigated. The microstructure and mechanical properties of as-cast and T6-treated Al-Si-Cu-Mg alloys were tested by OM, SEM, DSC and tensile measurement, where the samples were produced by artificial aging at 180°C for 8 h after solution treatment at 540°C for 4 h. It has been found that for the as-cast alloys, with increasing contents of Mg and Cu the tensile strength (UTS) and yield strength (YS) increased, while the percentage elongation (El) decreased. And the optimal mechanical properties of Al-Si-Cu-Mg alloys were obtained under the content ratio of Cu/Mg within 4, where the UTS and El reached 426 MPa and 6.3% after T6 treated, respectively.


2013 ◽  
Vol 770 ◽  
pp. 88-91
Author(s):  
Amporn Wiengmoon ◽  
Pattama Apichai ◽  
John T.H. Pearce ◽  
Torranin Chairuangsri

Effects of T6 artificial aging heat treatment on microstructure, microhardness and ultimate tensile strength of Al-4.93 wt% Si-3.47 wt% Cu alloy were investigated. The T6 age hardening treatment consists of solution treatment at 500±5°C for 8 hours followed by quenching into hot water at 80°C and artificial aging at 150, 170, 200 and 230°C for 1-48 hours followed by quenching into hot water. Microstructure was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). XRD and SEM revealed that the microstructure in the as-cast condition consists of primary dendritic α-Al, acicular-plate and globular forms of eutectic Si and intermetallic phases including globular Al2Cu and a flake-shape Al5FeSi. By T6 aging hardening, some intermetallics were dissolved and spheroidized. The volume fraction of eutectic phases in the as-cast, solution-treated, and solution-treated plus aging at 170°C for 24 hours is 17%, 12% and 10%, respectively. TEM results showed that precipitates in under-aging condition at 170° C for 6 hours are in the form of disc shape with the diameter in the range of 7-20 nm. At peak aging at 170°C for 24 hours, thin-plate precipitates with about 3-10 nm in thickness and 20-100 nm in length were found, lengthening to about 30-200 nm at longer aging time. The microhardness and ultimate tensile strength were increased from 71 HV0.05 and 227 MPa in the as-cast condition up to 140 HV0.05 and 400 MPa after solution treatment plus aging at 170°C for 24 hours, and decreased at prolong aging time.


2011 ◽  
Vol 399-401 ◽  
pp. 17-20
Author(s):  
Wen Bin Yu ◽  
Zhi Qian Chen ◽  
Mang Zhang ◽  
Zhou Yu

The precipitation hardening response of as-cast Mg-8Yb-0.5Zr magnesium alloy was investigated in the present work. The microstructure evolution of the alloy illustrated that Mg2Yb intermetallic phase was dissolved by solution heat treatment at 520°C for 12 hours. An apparent precipitation hardening response in Mg-8Yb-0.5Zr was discovered after artificial aging at 150°C, with maximum hardness increment of about 80 percent at the peak condition. It was found that the precipitates of the alloy were in the shape of two conjoined cosh and globe about 50 nm, and precipitated preferentially on grain boundaries and dislocations.


2006 ◽  
Vol 519-521 ◽  
pp. 1865-1870 ◽  
Author(s):  
Murat Tiryakioğlu

The effects of solution treatment time and artificial aging on the work hardening characteristics on Al-7%Si-0.6%Mg (D357) alloy castings were investigated. Four different solution treatment times at 540°C (1, 4, 16 and 64 hours) and six different artificial aging times at 160°C (0, 2.5, 5, 10, 20 and 40 hours) were used. Work hardening characteristics were investigated by Kocks-Mecking plots for each specimen. The effects of Si particle morphology (solution treatment) and matrix strength (aging) on Kocks-Mecking (Stage III) work hardening model parameters are discussed in the paper.


2015 ◽  
Vol 787 ◽  
pp. 658-663 ◽  
Author(s):  
B. Geetha ◽  
K. Ganesan

An Investigation was carried out to study the effect of red mud reinforcement in Al-6Si-0.45Mg alloy (A356) for improving hardness, wear rate and co-efficient friction. The red mud 53 micron size particles collected from MALCO, Mettur, Tamil Nadu, India, was preheated in a furnace to 500o C and mixed with molten Al-6Si-0.45Mg alloy to make the composite specimens. Al-6Si-0.45Mg alloy-red mud composite specimens were manufactured by stir casting technique using Al-6Si-0.45Mg alloy as matrix and reinforced with 5%, 10%, 15% and 20% volume percentages red mud as the reinforcement. The Al-6Si-0.45Mg alloy–red mud composite specimens were T6 heat treated to improve the mechanical properties. The artificial aging time and aging duration were varied to study their effect on mechanical properties of the composites. Then the specimens hardness, wear rate and coefficient of friction were tested as per ASTM standards. It was found that the hardness increased when the red mud content was increased in the base alloy at all the heat treatment conditions. The peak age timing which gives highest hardness was found to decrease with increased red mud content. The wear rate was decreased when the hardness was increased. The effect of solution treatment and artificial aging on the microstructure was also studied by microscopy.


2018 ◽  
Vol 735 ◽  
pp. 378-381 ◽  
Author(s):  
Maowen Liu ◽  
Ruixiao Zheng ◽  
Wenlong Xiao ◽  
Qiuming Peng ◽  
Hiroshi Yamagata ◽  
...  

2017 ◽  
Vol 891 ◽  
pp. 354-359
Author(s):  
Lenka Kuchariková ◽  
Eva Tillová ◽  
Mária Chalupová ◽  
Juraj Belan ◽  
Ivana Švecová ◽  
...  

The contribution describes changes in morphology of structural parameters in recycled (secondary) AlSi9Cu3 cast alloy microstructure. These changes depended on different temperatures of artificial aging. The T6 heat treatment, which was used for affecting the structural parameters morphology, consisted of solution treatment at temperature 515 °C with holding time 4 hours, water quenching at 40°C and artificial aging at different temperatures 130 °C, 150 °C, 170 °C, 190 °C and 210 °C with different holding time 2, 4, 8, 16 and 32 hours. The morphology of structural parameters was observed using combination of different analytical techniques (light microscopy upon black-white and colour etching, scanning electron microscopy - SEM upon deep etching). The different temperatures of artificial aging led to changes in microstructure include the spheroidization and coarsening of eutectic silicon, gradual disintegration, shortening and thinning of Fe-rich intermetallic phases, the dissolution of precipitates and the precipitation of finer hardening phase (Al2Cu).


Sign in / Sign up

Export Citation Format

Share Document