Effects of T6 Age Hardening on Microstructure and Mechanical Properties of Al-Si-Cu Cast Aluminium Alloy

2013 ◽  
Vol 770 ◽  
pp. 88-91
Author(s):  
Amporn Wiengmoon ◽  
Pattama Apichai ◽  
John T.H. Pearce ◽  
Torranin Chairuangsri

Effects of T6 artificial aging heat treatment on microstructure, microhardness and ultimate tensile strength of Al-4.93 wt% Si-3.47 wt% Cu alloy were investigated. The T6 age hardening treatment consists of solution treatment at 500±5°C for 8 hours followed by quenching into hot water at 80°C and artificial aging at 150, 170, 200 and 230°C for 1-48 hours followed by quenching into hot water. Microstructure was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). XRD and SEM revealed that the microstructure in the as-cast condition consists of primary dendritic α-Al, acicular-plate and globular forms of eutectic Si and intermetallic phases including globular Al2Cu and a flake-shape Al5FeSi. By T6 aging hardening, some intermetallics were dissolved and spheroidized. The volume fraction of eutectic phases in the as-cast, solution-treated, and solution-treated plus aging at 170°C for 24 hours is 17%, 12% and 10%, respectively. TEM results showed that precipitates in under-aging condition at 170° C for 6 hours are in the form of disc shape with the diameter in the range of 7-20 nm. At peak aging at 170°C for 24 hours, thin-plate precipitates with about 3-10 nm in thickness and 20-100 nm in length were found, lengthening to about 30-200 nm at longer aging time. The microhardness and ultimate tensile strength were increased from 71 HV0.05 and 227 MPa in the as-cast condition up to 140 HV0.05 and 400 MPa after solution treatment plus aging at 170°C for 24 hours, and decreased at prolong aging time.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 790 ◽  
Author(s):  
Changping Tang ◽  
Kai Wu ◽  
Wenhui Liu ◽  
Di Feng ◽  
Xuezhao Wang ◽  
...  

The effects of Gd, Y content on the microstructure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy were investigated using hardness measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and uniaxial tensile testing. The results indicate that the alloys in as-cast condition mainly consist of α-Mg matrix and non-equilibrium eutectic Mg5.05RE (RE = Gd, Y, Nd). After solution treatment, the non-equilibrium eutectics dissolved into the matrix but some block shaped RE-rich particles were left at the grain boundaries and within grains. These particles are especially Y-rich and deteriorate the mechanical properties of the alloys. Both the compositions of the eutectic and the block shaped particle were independent of the total Gd, Y content of the alloys, but the number of the particles increases as the total Gd, Y content increases. The ultimate tensile strength increases as the total Gd, Y content decreases. A Mg-5.56Gd-3.38Y-1.11Nd-0.48Zr alloy with the highest ultimate tensile strength of 280 MPa and an elongation of 1.3% was fabricated. The high strength is attributed to the age hardening behavior and the decrease in block shaped particles.


2013 ◽  
Vol 747-748 ◽  
pp. 398-403 ◽  
Author(s):  
Dong Qing Zhao ◽  
Xu Guang Dong ◽  
Xin En Zhang ◽  
An Jiang Gao ◽  
Ji Xue Zhou ◽  
...  

The microstructures and tensile properties of as-cast, solution-treated and aged Mg-4Zn-2Sn-2Al (wt.%) alloy have been investigated. The microstructure of the as-cast alloy consists of α-Mg, Mg2Sn and Mg32(Al,Zn)49 phases. The yield tensile strength and the ultimate tensile strength of the as-cast alloy are 87.7 MPa and 241.3 MPa, respectively, and the elongation reaches to 18.8% showing excellent ductility. After solution treatment, all of the Mg32(Al,Zn)49 phase and the majority of Mg2Sn particles have dissolved into the matrix. During aging process, Mg2Sn phase precipitates from the α-Mg supersaturated solid solution. With the precipitation strengthening of Mg2Sn phase, the yield tensile strength and the ultimate tensile strength of the alloy increase to 112.5 MPa and 280.4 MPa, respectively, while, the elongation decreases to 12%.


2011 ◽  
Vol 197-198 ◽  
pp. 1125-1128 ◽  
Author(s):  
Jing Jiang Nie ◽  
Liang Meng ◽  
Xiu Rong Zhu ◽  
Yong Dong Xu ◽  
Yue Yi Wu ◽  
...  

The effect of the combined action of hot work and heat treatment on the microstructure and mechanical properties of a Mg-2Gd-Nd-0.4Zn-0.3Zr (wt. %) (E21) alloy was investigated. Results showed that the solution treatment time of the ingot played a great effect on the mechanical properties of the extruded alloy. With solution treating time of the ingot increasing, the tensile strength of the extruded alloy decreased gradually, but the elongation increased greatly. The best combination of strength and ductility was achieved for the extruded alloy after the ingot solution treated at 520°C for 3 h, extrusion at 400°C and aging at 200°C for 16 h, namely ultimate tensile strength = 331MPa and elongation = 7.1%.


Author(s):  
Mohamad Yahya Nefawy ◽  
Mahmoud Al Asad

In this research, we studied the effect of change in artificial aging time and temperature on tensile strength and Microstructure for 7075 aluminum alloy, Where samples of aluminum alloy 7075 were treated with artificial aging at different temperatures are 120 ° C, 160 ° C and 200 ° C for 0.5, 1.5, 3, 18, 48 hours. When the 7075 aluminum alloy was artificially aged in of 120 ° C and 160 ° C, the values of ultimate tensile strength (UTS) of the alloy were higher than when it was aged in 200 ° C. By increasing of artificial aging time, the UTS of 7075 aluminum alloy increased, when the aging temperature was 120 ° C or 160 ° C, while the UTS decreased when the aging temperature was 200 ° C. This is due to changes in the microstructure, grain size, and precipitating phases such as MgZn2.


2012 ◽  
Vol 482-484 ◽  
pp. 1530-1533
Author(s):  
Ming Li Huang ◽  
Hua Ying Li ◽  
Hua Ding

In the present work, mechanical properties and microstructures of hot-rolled and solution-treated Fe-26Mn-6Al-1C steel (6Al steel) were investigated. Tensile tests were carried out at room temperature. The samples were characterized by using XRD, OM, SEM and TEM. The results suggested that the microstructure of the hot rolled 6Al steel was fully austenitic. After solution treatment and deformation, the microstructure was still single austenite. With the increase of the solution treatment temperatures, the strength decreased and the elongation increased. After solution treated at 1100°C for 1h, the yield strength, ultimate tensile strength and elongation were 378MPa, 756MPa and 57%.


Author(s):  
Yachao Wang ◽  
Jing Shi ◽  
Xiaoyang Deng ◽  
Shiqiang Lu

Laser assisted additive manufacturing (LAAM) is regarded as a complementary manufacturing method to traditional manufacturing technologies. Meantime, improving the mechanical performance of components fabricated by LAAM is an important research focus in recent years and it has drawn significant attention from both industrial and research aspects. In the present study, in order to obtain high-performance metal components by LAAM, nano-TiC particles are used to reinforce Inconel 718 and the mixed raw powder is processed by selective laser melting (SLM) technique. To investigate the effect of TiC amount on the property and performance of the composite, samples with four levels of nano-TiC addition (0, 0.4, 0.8 and 1.6 wt.%) are prepared, all other manufacturing parameters are set fixed. Furthermore, standard solid solution treatment at 980 °C for 1 hour is carried out to investigate its effect on the final properties. SEM observations are performed to analyze the microstructure of the composites. In addition, to understand the reinforcing mechanism of nano particles in LAAM-produced metal composites at both as-built and heat treated state, we consider four main strengthening mechanisms, (a) load-bearing effect, (b) enhanced dislocation density due to the residual plastic strain caused by the difference in the coefficients of thermal expansion (CTE) between the matrix and reinforcing particles, (c) Orowan strengthening effect, and (d) Hall-Petch strengthening. The effect of TiC nano particle amount on each of the four strengthening mechanisms is investigated separately and the results show that within the investigated range, the increase of reinforcement content leads to higher tensile strength. With 1.6 wt.% reinforcement, the ultimate tensile strength increases by 15%. At as-built condition, the composites have the maximum yield strength (YS) and ultimate tensile strength (UTS), while for solution treated samples, the tensile strengths are overall lower due to microstructure coarsening. Through quantitative investigation, it is found that both as-built and solution treated conditions, the load-effect strengthening effect is very small as compared with other contributors. Thermal mismatch strengthening effect is most significant at any volume fraction under as-built condition, mainly due to high SLM temperature. However, for solution-treated condition, CTE mismatch strengthening is weakened because solution treatment significantly equilibrates the thermal strain in the composite, and diminishes most strain-induced dislocations. However, Hall-Petch strengthening becomes dominating as large amount of nanoparticles effectively inhibit the grain coarsening during solution treatment.


2020 ◽  
Vol 8 (4) ◽  
pp. 37-47
Author(s):  
Mohamad Yahya Nefawy ◽  
Mahmoud Al Asad

In this research, we studied the effect of change in artificial aging time and temperature on tensile strength and Microstructure for 7075 aluminum alloy, Where samples of aluminum alloy 7075 were treated with artificial aging at different temperatures are 120 ° C, 160 ° C and 200 ° C for 0.5, 1.5, 3, 18, 48 hours. When the 7075 aluminum alloy was artificially aged in of 120 ° C and 160 ° C, the values of ultimate tensile strength (UTS) of the alloy were higher than when it was aged in 200 ° C. By increasing of artificial aging time, the UTS of 7075 aluminum alloy increased, when the aging temperature was 120 ° C or 160 ° C, while the UTS decreased when the aging temperature was 200 ° C. This is due to changes in the microstructure, grain size, and precipitating phases such as MgZn2.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
O. I. Sekunowo ◽  
G. I. Lawal ◽  
S. O. Adeosun

Samples of the 6063 (Al-1.09Mg2Si) alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520∘C, soaked for 6 hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175∘C for 3–7 hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4) exhibited superior ultimate tensile strength of 247.8 MPa; microhardness, 68.5 HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2016 ◽  
Vol 850 ◽  
pp. 511-518 ◽  
Author(s):  
Hai Jun Liu ◽  
Lie Jun Li ◽  
Jian Wei Niu ◽  
Ji Xiang Gao ◽  
Chuan Dong Ren

The effects of Mg and Cu additions with different contents on the mechanical properties of Al-Si alloy prepared by indirect squeeze casting have been experimentally investigated. The microstructure and mechanical properties of as-cast and T6-treated Al-Si-Cu-Mg alloys were tested by OM, SEM, DSC and tensile measurement, where the samples were produced by artificial aging at 180°C for 8 h after solution treatment at 540°C for 4 h. It has been found that for the as-cast alloys, with increasing contents of Mg and Cu the tensile strength (UTS) and yield strength (YS) increased, while the percentage elongation (El) decreased. And the optimal mechanical properties of Al-Si-Cu-Mg alloys were obtained under the content ratio of Cu/Mg within 4, where the UTS and El reached 426 MPa and 6.3% after T6 treated, respectively.


Sign in / Sign up

Export Citation Format

Share Document