scholarly journals Allergen, pathogen, or biotechnological tool? The dematiaceous fungi Alternaria what’s for it and what’s on it?

2021 ◽  
Vol 4 (3) ◽  
pp. 01-06
Author(s):  
Waill A. Elkhateeb ◽  
Abdu Galib AL Kolaibe ◽  
Azza Elkhateeb ◽  
Ghoson M. Daba

Fungi are rich sources of biologically active natural compounds, which are used in the manufacturing of wide range of clinically important drugs. Alternaria is a fungal genus that belongs to family Pleosporaceae, and has been known as a promising secondary metabolites producer. However the same fungus showed harmful pathogenicity against different plants causing crops economical losses, and is a common allergen in humans, growing indoors and causing hay fever or hypersensitivity reactions. Alternaria is a multicultural fungal genus widely distributing in soil and organic matter. It includes saprophytic, endophytic and pathogenic species. This review aims to briefly summarize the structurally different metabolites produced by Alternaria fungi, as well as their occurrences, biological activities and functions.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3166
Author(s):  
Anthi Petrou ◽  
Maria Fesatidou ◽  
Athina Geronikaki

Background: Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. Objective: To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. Results: Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.


Synthesis ◽  
2018 ◽  
Vol 51 (06) ◽  
pp. 1342-1352 ◽  
Author(s):  
Javier Izquierdo ◽  
Atul Jain ◽  
Sarki Abdulkadir ◽  
Gary Schiltz

The chromenone core is an ubiquitous group in biologically active natural products and has been extensively used in organic synthesis. Fluorine-derived compounds, including those with a trifluoromethyl group (CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogues. 2-Trifluoromethylchromenones can be readily functionalized at the 8- and 7-positions, providing chromenones cores of high structural complexity, which are excellent precursors for numerous trifluoromethyl heterocycles.


Author(s):  
Mahathy Vanguru ◽  
Ramchander Merugu ◽  
Swetha Garimella ◽  
Laxminarayana E

Chromones group of compounds and their derivatives form the essential component of pharmacophores in many biologically active molecules. They exhibit a wide range of biological activities such as antibiotic, antitumor, antiviral, antioxidant, antipsychotic, and antihypoxic activities. These applications have stimulated a continuous search for the synthesis of new compounds in this field and are being extensively investigated. The various methodologies so far reported for the synthesis of these compounds with the compounds biological applications are discussed in this communication


2020 ◽  
Vol 24 (1) ◽  
pp. 4-43 ◽  
Author(s):  
Maja Molnar ◽  
Melita Lončarić ◽  
Marija Kovač

This review is a compilation of the green synthetic methods used in the synthesis of coumarin derivatives. Coumarins are a class of compounds with a pronounced wide range of biological activities, which have found their application in medicine, pharmacology, cosmetics and food industry. Their biological activity and potential application are highly dependent on their structure. Therefore, many researchers have been performing the synthesis of coumarin derivatives on a daily basis. High demands for their synthesis often result in an increased generation of different waste chemicals. In order to minimize the utilization and generation of toxic organic substances, green synthetic methods are applied in this manner. These methods are getting more attention in the last few decades. Green chemistry methods cover a wide range of methods, including the application of ultrasound and microwaves, ionic liquids and deep eutectic solvents, solvent-free synthesis, mechanosynthesis and multicomponent reactions. All typical condensation reactions for coumarin synthesis like Knoevenagel, Perkin, Kostanecki-Robinson, Pechmann and Reformansky reactions, have been successfully performed using these green synthetic methods. According to the authors mentioned in this review, not only these methods reduce the utilization and generation of toxic chemicals, but they can also enhance the reaction performance in terms of product yields, purity, energy consumption and post-synthetic procedures when compared to the conventional methods. Due to the significance of coumarins as biologically active systems and the recent demands of reducing toxic solvents, catalysts and energy consumption, this review provides a first full literature overview on the application of green synthetic methods in the coumarin synthesis. It covers a literature search over the period from 1995-2019. The importance of this work is its comprehensive literature survey on a specific class of heterocyclic compounds, and those researchers working on the coumarin synthesis can find very useful information on the green synthetic approaches to their synthesis. There are some reviews on the coumarin synthesis, but most of them cover only specific reactions on coumarin synthesis and none of them the whole range of green chemistry methods.


2019 ◽  
Vol 16 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Aurelio Ortiz ◽  
Miriam Castro ◽  
Estibaliz Sansinenea

Background:3,4-dihydroisocoumarins are an important small group belonging to the class of naturally occurring lactones isolated from different bacterial strains, molds, lichens, and plants. The structures of these natural compounds show various types of substitution in their basic skeleton and this variability influences deeply their biological activities. These lactones are structural subunits of several natural products and serve as useful intermediates in the synthesis of different heterocyclic molecules, which exhibit a wide range of biological activities, such as anti-inflammatory, antiplasmodial, antifungal, antimicrobial, antiangiogenic and antitumoral activities, among others. Their syntheses have attracted attention of many researchers reporting many synthetic strategies to achieve 3,4-dihydroisocoumarins and other related structures. </P><P> Objective: In this context, the isolation of these natural compounds from different sources, their syntheses and biological activities are reviewed, adding the most recent advances and related developments.Conclusion:This review aims to encourage further work on the isolation and synthesis of this class of natural products. It would be beneficial for synthetic as well as the medicinal chemists to design selective, optimized dihydroisocoumarin derivatives as potential drug candidates, since dihydroisocoumarin scaffolds have significant utility in the development of therapeutically relevant and biologically active compounds.


2017 ◽  
Vol 45 (02) ◽  
pp. 199-224 ◽  
Author(s):  
Zefeng Zhao ◽  
Xirui He ◽  
Qiang Zhang ◽  
Xiaoyang Wei ◽  
Linhong Huang ◽  
...  

Plants from the genus Sanguisorba have been treated as medicinal ingredients for over 2000 years. This paper reviews advances in the botanical, phytochemical and pharmacological studies of the genus. To date, more than 120 chemical constituents have been isolated and identified from these plants, especially from S. officinalis and S. minor. Among these compounds, triterpenoids, phenols and flavonoids are the primary biologically active constituents. Triterpenoids can be used as quality control markers to determine the quality of medicinal materials and their preparations. In vivo and in vitro studies have shown that plants from the genus Sanguisorba exhibit a wide range of pharmacological properties, including hemostatic, antibacterial, antitumor, neuroprotective and hypoglycemic activities. In Chinese medical practice, many drugs (e.g., tablets and powders) that contain S. officinalis roots have been used to treat leukopenia, hemorrhaging and burns. However, there is still a multitude of Sanguisorba species that have garnered little or no attention. Indeed, there are few reports concerning the clinical use and toxic effects of these plants. Further attention should be focused on the study of these species in order to gather information on their respective toxicology data, any relevant quality-control measures, and the clinical value of the crude extracts, active compounds, and bioactive metabolites from Genus Sanguisorba.


1988 ◽  
Vol 66 (1) ◽  
pp. 45-50 ◽  
Author(s):  
R. Fathi-Afshar ◽  
T. M. Allen

Two novel bicyclic diterpenoides, agelasimine-A (9), and agelasimine-B (10), have been isolated from the orange sponge Agelas mauritiana. Also, a new bromine-containing alkaloid, 5-debromomidpacamide (12), along with midpacamide (13) and methyl N-methyl-4,5-dibromopyrrole-2-carboxylate (11), has been isolated. The structures were determined by interpretation of their spectral data. Agelasimine-A and -B exhibit a wide range of interesting biological activities such as cytotoxicity, inhibition of adenosine transfer into rabbit erythrocytes, Ca2+-channel antagonistic action, and α1 adrenergic blockade.


2008 ◽  
Vol 73 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Marta Kučerová-Chlupáčová ◽  
Veronika Opletalová ◽  
Josef Jampílek ◽  
Jan Doležel ◽  
Jiří Dohnal ◽  
...  

Pyrazine derivatives show a wide range of biological activities. 1-Pyrazin-2-ylethan-1-ones have served as food flavourants, and together with pyrazine-2-carbonitriles have been widely used as intermediates in the synthesis of various heterocyclic compounds. In our laboratory, substituted pyrazine-2-carbonitriles and 1-pyrazin-2-ylethan-1-ones have been used as intermediates for the preparation of potential antifungal and antimycobacterial drugs. Using established methods, a library of pyrazine derivatives was synthesized. Homolytic alkylation of commercially available pyrazine-2-carbonitrile yielded a series of 5-alkylpyrazine-2-carbonitriles which were converted into the corresponding 1-(5-alkylpyrazin-2-yl)ethan-1-ones (5-alkyl-2-acetylpyrazines) via the Grignard reaction. Homolytic acetylation of pyrazine-2-carbonitrile yielded 5-acetylpyrazine-2-carbonitrile. Using the same procedure, 3-acetyl-5-tert-butylpyrazine-2-carbonitrile was obtained with 5-tert-butylpyrazine-2-carbonitrile as a starting material. The hydrophobicity of the compounds was determined both experimentally (RP-HPLC) and by computation (CS ChemOffice Ultra version 9.0, ACD/LogP version 1.0 and ACD/LogP version 9.04), and both the approaches were compared. New hydrophobicity constants π based on experimental results were derived. These constants are markedly different from tabulated constants π valid for benzene rings, and can be widely used in estimating physicochemical properties of new biologically active pyrazines.


Author(s):  
Sayed Rashad ◽  
Ghadir El-Chaghaby

Nowadays, the use of natural bio-products in pharmaceuticals is gaining popularity as safe alternatives to chemicals and synthetic drugs. Algal products are offering a pure, healthy and sustainable choice for pharmaceutical applications. Algae are photosynthetic microorganisms that can survive in different environmental conditions. Algae have many outstanding properties that make them excellent candidate for use in therapeutics. Algae grow in fresh and marine waters and produce in their cells a wide range of biologically active chemical compounds. These bioactive compounds are offering a great source of highly economic bio-products. The present review discusses the phytochemical and bioactive compounds present in algae biomass and their potent biological activities. The review focuses on the use of alga in therapy and their pharmaceutical applications with special reference to the possible preventive and therapeutic role of algae against COVID-19.


2020 ◽  
Author(s):  
Deepak Timalsina

AbstractThe process of drug discovery and development in the world over a recent year has been increasingly shaped by the formulaic approaches and natural products, prioritized by popular pharmaceutical industries. In many countries like Nepal, Randia dumetorum (Maidal) is one of the popular alternatives for overcoming various symptoms such as acidity, food poisoning ulcers, diabetes and ulcers. It has been using by the people because of its wide range of therapeutic uses. Though, the considerable research had been conducted to reveal the biologically active compounds and its pharmacological effect, the rich constituent of this plant and its major biological perspective was yet to be studied comprehensively. Accordingly, the main focus of this study was the alpha amylase inhibition of methanolic extracts obtained from leaves and barks of Randia dumetorum plant. The plant extracts were obtained by dissolving dried plant with 100% methanol overnight and evaporating to the dryness. The obtained plant extract was used to study mentioned biological activities. The results obtained showed that the extract obtained from leaves and barks showed antioxidant and alpha amylase inhibition activities. This research can be helpful to discover new types of therapeutics in the future.


Sign in / Sign up

Export Citation Format

Share Document