scholarly journals Menstrual Blood Mesenchymal Stem Cells: Boon in Therapeutics

2021 ◽  
Vol 2 (4) ◽  
pp. 01-06
Author(s):  
PD Gupta

Stem cell therapy gained momentum for the past three decades in therapeutics. Alternative strategies are indispensable for the treatment of many diseases in the present scenario due to side effects of synthetic chemicals as drugs. Mesenchymal cells of different origin have been in use with good results, though ethical issues and limited availability is a drawback. Novel menstrual blood mesenchymal stems cells prove to be a wealth out of waste is a boon in therapeutics. In this review we bring a bird’s eye view of different diseases treated with menstrual blood mesenchymal stem cells with positive results. Evolution in the use of these cells more and more will be a big relief to many who suffer with side effects of drugs.

2019 ◽  
Vol 14 (8) ◽  
pp. 644-653 ◽  
Author(s):  
Jinxuan Ren ◽  
Na Liu ◽  
Na Sun ◽  
Kehan Zhang ◽  
Lina Yu

Chronic pain is a common condition that seriously affects the quality of human life with variable etiology and complicated symptoms; people who suffer from chronic pain may experience anxiety, depression, insomnia, and other harmful emotions. Currently, chronic pain treatments are nonsteroidal anti-inflammatory drugs and opioids; these drugs are demonstrated to be insufficient and cause severe side effects. Therefore, research into new therapeutic strategies for chronic pain is a top priority. In recent years, stem cell transplantation has been demonstrated to be a potent alternative for the treatment of chronic pain. Mesenchymal stem cells (MSCs), a type of pluripotent stem cell, exhibit multi-directional differentiation, promotion of stem cell implantation, and immune regulation; they have also been shown to exert analgesic effects in several chronic pain models. Exosomes produced by MSCs have been demonstrated to relieve painful symptoms with fewer side effects. In this review, we summarize the therapeutic use of MSCs in various chronic pain studies. We also discuss ways to enhance the treatment effect of MSCs. We predict in the future, cell-free therapies for chronic pain will develop from exosomes secreted by MSCs.


2021 ◽  
Vol 9 (2) ◽  
pp. e001684
Author(s):  
Rafael Moreno

The development of oncolytic viruses (OVs) has increased significantly in the past 20 years, with many candidates entering clinical trials and three of them receiving approval for some indications. Recently, OVs have also gathered interest as candidates to use in combination with immunotherapies for cancer due to their immunogenic properties, which include immunogenic cell death and the possibility to carry therapeutic transgenes in their genomes. OVs transform non-immunogenic ‘cold’ tumors into inflamed immunogenic ‘hot’ tumors, where immunotherapies show the highest efficacy. However, in monotherapy or in combination with immunotherapy, OVs face numerous challenges that limit their successful application, in particular upon systemic administration, such as liver sequestration, neutralizing interactions in blood, physical barriers to infection, and fast clearance by the immune system. In this regard, the use of mesenchymal stem cells (MSCs) as cells carrier for OV delivery addresses many of these obstacles acting as virus carriers and factories, expressing additional transgenes, and modulating the immune system. Here, I review the current progress of OVs-loaded MSCs in cancer, focusing on their interaction with the immune system, and discuss new strategies to improve their therapeutic efficacy.


Lupus ◽  
2010 ◽  
Vol 19 (12) ◽  
pp. 1468-1473 ◽  
Author(s):  
L. Sun

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multiorgan involvement and high mortality, which was reduced because of the most widely and classically used immunosuppressive therapies. However, some patients continue to have significant mortality. So a shift in the approach to the treatment of SLE is needed. In the past decade, most transplants have been performed in the treatment of SLE with allogeneic or autologous hematopoietic stem cells and currently emerging mesenchymal stem cells. There are some important differences between the two procedures.


2018 ◽  
Vol 55 ◽  
pp. 53-62 ◽  
Author(s):  
Razieh Dalirfardouei ◽  
Khadijeh Jamialahmadi ◽  
Elahe Mahdipour

Author(s):  
Leelavathy Budamakuntla ◽  
Eswari Loganathan ◽  
Shwetha Suryanarayana ◽  
Aparna Dongre

<p class="abstract"><strong>Background:</strong> Androgenetic alopecia has been a stressful condition for the patients and treating dermatologists alike. With the advent of stem cell therapy in various diseases, and lot of controversies and ethical issues related to it, mesenchymal stem cells MSC have passed the acid test successfully, though with many challenges. Since the stem cells in the hair follicle bulge and the dermal papilla play an important role in hair cycle and growth, introducing an external source of neonatal mesenchymal stem cells seems to be a possibility in the treatment of AGA. Aims: To know the benefits and safety of stem cell treatment in patients who underwent mesotherapy with neonatal MSC in order to establish the safety and efficacy in the treatment of AGA.</p><p class="abstract"><strong>Methods:</strong> We collected data of 40 patients treated with mesoinjections of commercially prepared neonatal MSC, with AGA of grade 2 to 7. Before and after photographs, Patient (PtGA) and Physician (PGA) Global assessment scores were used to evaluate the treatment response.</p><p class="abstract"><strong>Results:</strong> We found that 70% of the patients showed a mild response and 25% of them showed a moderate improvement in the hair growth and reduction in hair loss after 4 sittings of monthly duration. One subject showed an improvement of 72%. Patients had 6 month follow up. No major adverse events were observed.</p><p class="abstract"><strong>Conclusions:</strong> Since this is an observational study, large randomized controlled studies, with longer follow ups is recommended to make MSC therapy a novel treatment option for AGA. </p><strong>Keywords: </strong>Mesenchymal stem cells, Mesotherapy, Androgenetic alopecia


2010 ◽  
pp. 323-329 ◽  
Author(s):  
B Ye

Intracellular free Ca(2+) is one of important biological signals regulating a number of cell functions. It has been discussed widely and extensively in several cell types during the past two decades. Attention has been paid to the Ca2+ transportation in mesenchymal stem cells in recent years as mesenchymal stem cells have gained considerable interest due to their potential for cell replacement therapy and tissue engineering. In this paper, roles of intracellular Ca(2+) oscillations and its transporters in mesenchymal stem cells have been reviewed.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yun-xia Zhao ◽  
Shao-rong Chen ◽  
Ping-ping Su ◽  
Feng-huang Huang ◽  
Yan-chuan Shi ◽  
...  

Female infertility impacts the quality of life and well-being of affected individuals and couples. Female reproductive diseases, such as primary ovarian insufficiency, polycystic ovary syndrome, endometriosis, fallopian tube obstruction, and Asherman syndrome, can induce infertility. In recent years, translational medicine has developed rapidly, and clinical researchers are focusing on the treatment of female infertility using novel approaches. Owing to the advantages of convenient samples, abundant sources, and avoidable ethical issues, mesenchymal stem cells (MSCs) can be applied widely in the clinic. This paper reviews recent advances in using four types of MSCs, bone marrow stromal cells, adipose-derived stem cells, menstrual blood mesenchymal stem cells, and umbilical cord mesenchymal stem cells. Each of these have been used for the treatment of ovarian and uterine diseases, and provide new approaches for the treatment of female infertility.


Sign in / Sign up

Export Citation Format

Share Document