scholarly journals Impact of NiO2 Nanoparticles and Curcumin on Testis Torsion/Detorsion Injury: Role of miR-34 and circRNA 0001518

2021 ◽  
Vol 10 ◽  
pp. e2342
Author(s):  
Shabnam Zarei Moradi ◽  
Seyed Abdolhamid Angaji ◽  
Mitra Salehi ◽  
Mehrdad Hashemi

Background: Testicular torsion is one cause of infertility without proper treatment. In this study, we investigate the effects of NiO2 nanoparticles (NPs) and curcumin on sperm parameters in rats and the expressions of genes involved in the apoptotic pathway, as well as expressions of miR-34 and circRNA 0001518. Materials and Methods: Forty-eight rats were randomly divided into eight groups: control (healthy rats), control rats that received NiO2-NPs, healthy rats that received curcumin, rats that received simultaneous NiO2-NPs and curcumin, untreated testicular ischemia/reperfusion (I/R) rats, testicular I/R rats that received NiO2-NPs, testicular I/R rats that received curcumin, and testicular I/R rats that received NiO2-NPs and curcumin. Then, sperms were extracted from the rats’ epididymides to analyze concentration, viability, morphology, and motility. The cellular apoptosis level was studied using flow cytometry. Also, Bad and Bcl-X gene expressions, as well as miR-34 and circRNA 0001518 levels were measured. Results: We observed improved sperm parameters in the testicular I/R) rats that received curcumin and NiO2-NPs. Administration of NiO2-NPs to healthy rats increased both apoptosis and the Bad/Bcl-X expression ratio. However, its administration to testicular I/R rats alone or in combination with curcumin decreased apoptosis and the Bad/Bcl-X expression ratio and increased expressions of miR-34 and circRNA 0001518. Conclusion: Administration of NiO2-NPs and curcumin, alone or in combination, can have therapeutic effects in testicular I/R conditions by altering the expressions of genes in the mitochondrial apoptotic pathway and their regulatory elements.

Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Jinju Wang ◽  
Xiaotang Ma ◽  
Shuzhen Chen ◽  
Xiang Xiao ◽  
Ji Bihl ◽  
...  

Introduction: The promising of neuron progenitor cells (NPCs) or endothelial progenitor cells (EPCs) for treating ischemic stroke has been recognized. In this study, we determined the therapeutic effects of NPC and EPC co-transplantation and the underlying mechanisms in a mouse model of ischemia-reperfusion (I-R) stroke. Methods: NPCs and EPCs were generated from human inducible pluripotent stem cells. C57BL/6 adult mice were subjected to middle cerebral artery occlusion (MCAO; 90 min) followed by reperfusion (30 min), and treated with (n=10/group): 1) PBS; 2) EPCs; 3) NPCs; 4) EPCs+NPCs (1:1 ratio); 5) EPCs+NPCs (1:1 ratio)+LY294002 (1μM). Cells (3x105/2μl PBS) were injected into ipsilateral striatum at 2 sites (1μl/site). Bromodeoxyuridine (BrdU, 65 mg/g/day, i.p.) was injected to label the new generated cells. Mice were sacrificed at days 2 and 10. Motor function (Rotarod test and neurologic deficit score), infarct volume, cerebral microvascular density (cMVD), neurogenesis and angiogenesis, and gene expressions of the PI3K/Akt pathway were evaluated. Results: Co-transplantation of EPCs and NPCs exhibited synergistic effects on improving motor function, increasing cMVD in the peri-infarct area, and decreasing infarct volume at days 2 and 10 (refer to table). Moreover, neurogenesis (Brdu+NeuN+) and angiogenesis (Brdu+CD31+) in the peri-infarct area were largely enhanced in the co-transplantation group at day 10 (refer to table). In addition, the protein ratio of p-Akt/Akt was increased in the brain in the co-transplantation group (p<0.05). These effects were significantly reduced by LY294002 administration. Conclusion: Co-transplantation of NPCs and EPCs synergistically increases cMVD, promotes angiogenesis and neurogenesis, and improves functional outcome in I-R injured mice. Activation of the PI3K/Akt signal pathway contributes to the synergistic effects of NPCs and EPCs.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jae Won Lee ◽  
Ee Taek Hwang ◽  
Jin Soo Han

Testicular torsion is a urologic emergency induced by torsion of the spermatic cord, interrupting blood circulation to the testis. Therapeutic options for testicular torsion, except surgical restoration of testis, are rarely applied in clinical practice. This study, therefore, investigated whether topical application of nitrite (NO2-) is beneficial in tissue damage due to testicular ischemia-reperfusion (I/R) injury in rats. Pubertal Sprague-Dawley rats were assigned to seven groups: group A, sham-operated control group; group B, I/R with no treatment; groups C, D, and E, I/R followed by treatment with three different doses of nitrite; group F, I/R followed by administration of nitrite and a NO scavenger, C-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt); and group G, I/R followed by administration of nitrate (NO3-). Unilateral testicular ischemia was maintained for 5 h, followed by reperfusion for 24 h. Nitrite and nitrate were topically administered before reperfusion. Compared to group A, germ cell apoptosis, oxidative stress, antioxidant enzymatic function, and lipid peroxidation were significantly increased, along with abnormal morphology and impaired spermatogenesis in group B ( P < 0.05 ). In contrast, testicular damage was generally attenuated in the nitrite treatment groups due to a reduction in superoxide and peroxynitrite levels and the inhibition of caspase-3-dependent apoptosis ( P < 0.05 vs. group B). These therapeutic effects of nitrite-derived NO were suppressed after injection of C-PTIO, which showed in group F. Taken together, our results demonstrate that topical application of nitrite may be one of the therapeutic strategies for testicular ischemia-reperfusion injury.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Farshid Davoodi ◽  
Shayan Taheri ◽  
Abbas Raisi ◽  
Asghar Rajabzadeh ◽  
Amir Zakian ◽  
...  

Abstract Background Testicular torsion/detorsion triggers tissue ischemia/reperfusion, leading to reactive oxygen species overgeneration and apoptosis. The saliva of leeches is full of anti-inflammatory, anticoagulants, antioxidants, and antimicrobial agents. Therefore, this study aimed to assess the protective mechanism of leech therapy on testicular ischemia/reperfusion damage. Methods 18 adult male rats were randomly divided into three groups: 1-Sham-operated group (SO). 2-Torsion/detorsion (T.D) group: two hours of testicular torsion with two hours of testicular detorsion was performed. 3-Torsion/detorsion + Leech therapy (TDL) group. Sperm parameters (motility, vitality, morphology, and concentration), oxidative stress biomarkers (MDA, CAT, GPx, and TAC), histopathological factors (Mean seminiferous tubular diameter, Germinal epithelial cell thickness, Testicular capsule thickness, Johnson’s score, and Cosentino’s score), and immunohistochemical markers for apoptosis detection (Bax, Bcl-2, and Caspase-3) were measured. Results There was a significant difference for all sperm parameters in the T. D group compared to the sham group. Leech therapy significantly increased progressive motility and normal morphology and reduced non-progressive motility. In the TDL group, MDA concentration significantly reduced, and levels of GPx, TAC, and CAT remarkably increased. All evaluated histopathological parameters in the TDL group significantly increased compared to the T. D group except for the testicular capsule thickness. T. D notably increased the expression of Bax and Caspase-3, while the treatment group slowed the rate of apoptosis compared to the control group. Bcl-2 expression in the T. D group was significantly lower than that in the sham group. Leech therapy increased the Bcl-2 expression. Conclusion Leech therapy attenuates damages to testicular tissue following torsion/detorsion due to its antioxidant, anti-inflammatory, and anti-apoptotic effects. Hence, it can be considered as an effective remedy for testicular ischemia/reperfusion. Graphical abstract


2010 ◽  
Vol 88 (12) ◽  
pp. 1123-1129 ◽  
Author(s):  
Askin Hekimoglu ◽  
Zehra Kurcer ◽  
Faruk Aral ◽  
Fusun Baba ◽  
Ahmet Atessahin ◽  
...  

The therapeutic effects of poly(adenosine diphosphate-ribose) polymerase inhibition by 3-aminobenzamide (3-AB) were investigated in testicular ischemia–reperfusion (I/R) injury, using sperm analysis and histopathological and biochemical examinations, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and reduced glutathione (GSH) levels. Male rats were divided into 3 groups: sham (n = 12), I/R (n = 12), and I/R with 3-AB (I/R–3-AB) (n = 12). The left testicular artery was occluded for 1 h, followed by 24 h (for biochemical and histopathological examinations) and 30 days (for sperm analysis) of reperfusion. 3-AB treatment intraperitoneally 10 min prior to and 1 h after reperfusion increased the I/R-induced decrease in sperm motility in both testes and reduced the increased abnormal sperm rates in the ipsilateral testis. However, 3-AB treatment failed to prevent the I/R-induced decrease in sperm concentration in both testes. SOD and CAT activities did not change in any group. GSH-Px activity and GSH levels were increased by I/R. 3-AB treatment reversed the I/R-induced increase in GSH-Px activity, similar to the level in sham rats, but did not alter GSH levels. 3-AB treatment significantly increased the I/R-induced decrease in histopathologic score. In conclusion, 3-AB treatment has potential biochemical and histopathological benefits beyond improving sperm quality and may have the potential to decrease damage from testicular torsion.


2020 ◽  
Vol 13 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Saeed Samarghandian ◽  
Kiavash Hushmandi ◽  
Amirhossein Zabolian ◽  
Md Shahinozzaman ◽  
...  

Background: Ischemia/reperfusion (I/R) injury is a serious pathologic event that occurs due to restriction in blood supply to an organ, followed by hypoxia. This condition leads to enhanced levels of pro-inflammatory cytokines such as IL-6 and TNF-, and stimulation of oxidative stress via enhancing reactive oxygen species (ROS) levels. Upon reperfusion, blood supply increases, but it deteriorates condition, and leads to generation of ROS, cell membrane disruption and finally, cell death. Plant derived-natural compounds are well-known due to their excellent antioxidant and anti-inflammatory activities. Quercetin is a flavonoid exclusively found in different vegetables, herbs, and fruits. This naturally occurring compound possesses different pharmacological activities making it appropriate option in disease therapy. Quercetin can also demonstrate therapeutic effects via affecting molecular pathways such as NF-B, PI3K/Akt and so on. Methods: In the present review, we demonstrate that quercetin administration is beneficial in ameliorating I/R injury via reducing ROS levels, inhibition of inflammation, and affecting molecular pathways such as TLR4/NF-B, MAPK and so on. Results and conclusion: Quercetin can improve cell membrane integrity via decreasing lipid peroxidation. Apoptotic cell death is inhibited by quercetin via down-regulation of Bax, and caspases, and upregulation of Bcl-2. Quercetin is able to modulate autophagy (inhibition/induction) in decreasing I/R injury. Nanoparticles have been applied for delivery of quercetin, enhancing its bioavailability and efficacy in alleviation of I/R injury. Noteworthy, clinical trials have also confirmed the capability of quercetin in reducing I/R injury.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


2021 ◽  
Vol 9 (5) ◽  
pp. 1370-1383
Author(s):  
Xiaoyu Lei ◽  
Jian Wang ◽  
Jie Chen ◽  
Jing Gao ◽  
Jinzheng Zhang ◽  
...  

Combined with a series of antibacterial tests and the genetic assessment of the apoptotic pathway, an evaluation system has been rationalized to govern the fate of the different compositions of PU-based sealers.


2008 ◽  
Vol 294 (3) ◽  
pp. F562-F570 ◽  
Author(s):  
Vani Nilakantan ◽  
Cheryl Maenpaa ◽  
Guangfu Jia ◽  
Richard J. Roman ◽  
Frank Park

20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK1 cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK1 cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release ( P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 μM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 μM) also inhibited cytotoxicity significantly ( P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase ( P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells ( P < 0.05). This was abolished in the presence of HET-0016 ( P < 0.05) or MnTMPyP ( P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.


Sign in / Sign up

Export Citation Format

Share Document