Traditional Tillage Systems as Drought Adaptation Strategies of Smallholder Farmers: The Case of Semi-Arid Central Tanzania

2009 ◽  
Vol 4 (2) ◽  
pp. 191-207 ◽  
Author(s):  
Riziki S. Shemdoe ◽  
Idris S. Kikula ◽  
Patrick Van Damme

This article presents local knowledge on ecosystem management by analyzing and discussing traditional tillage practices applied by smallholder farmers as a response to drought risks in dryland areas of Mpwapwa District, central Tanzania. Farming activities in the area wholly depend on rain-fed systems. Information from key informants and in-depth household interviews indicate that farmers in this area use three different traditional tillage practices—no-till (sesa), shallow tillage (kutifua), and ridges (matuta). Available information suggests that selection of a particular practice depends on affordability (in terms of costs and labor requirements), perceived ability to retain nutrient and soil-water, and improvement of control of erosion and crop yield. In this area, smallholder farmers perceive no-till practice to contribute to more weed species, hence more weeding time and labor are needed than in the other two practices. The no-till practice also contributes to low soil fertility, low soil moisture retention, and poor crop yield. No plans have been made to introduce irrigation farming in these marginal areas of central Tanzania. Thus, improving the ability of the tillage practices to conserve soil moisture and maintain soil fertility nutrients using locally available materials are important tasks to be carried out. This will ensure the selection of practices that will have positive influence on improved crop yields in the area.

Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


1994 ◽  
Vol 8 (1) ◽  
pp. 114-118 ◽  
Author(s):  
R. Gordon Harvey ◽  
Clark R. Wagner

Herbicide efficacy trials in field corn, sweet corn, and soybean were conducted at three locations in Wisconsin over a 6-yr period. Percent weed pressure (WP) was determined by visually estimating the contribution of all weed species present to the total crop and weed volume in each plot. Crop yields in each plot were measured. Percent crop yield reduction (YLDRED) was calculated by comparing mean yields of individual treatments with those of the highest yielding treatment in each trial. Linear regression analyses of YLDRED and WP data from 1640 field corn and 138 sweet corn treatments were significant. Nonlinear regression analysis of YLDRED and WP data from all 1374 soybean treatments was significant; however, a linear regression of those 1154 soybean treatments with WP ratings of 30 or less produced a more easily interpreted regression equation.


2020 ◽  
Author(s):  
Matias Heino ◽  
Weston Anderson ◽  
Michael Puma ◽  
Matti Kummu

<p>It is well known that climate extremes and variability have strong implications for crop productivity. Previous research has estimated that annual weather conditions explain a third of global crop yield variability, with explanatory power above 50% in several important crop producing regions. Further, compared to average conditions, extreme events contribute a major fraction of weather induced crop yield variations. Here we aim to analyse how extreme weather events are related to the likelihood of very low crop yields at the global scale. We investigate not only the impacts of heat and drought on crop yields but also excess soil moisture and abnormally cool temperatures, as these extremes can be detrimental to crops as well. In this study, we combine reanalysis weather data with national and sub-national crop production statistics and assess relationships using statistical copulas methods, which are especially suitable for analysing extremes. Further, because irrigation can decrease crop yield variability, we assess how the observed signals differ in irrigated and rainfed cropping systems. We also analyse whether the strength of the observed statistical relationships could be explained by socio-economic factors, such as GDP, social stability, and poverty rates. Our preliminary results indicate that extreme heat and cold as well as soil moisture abundance and excess have a noticeable effect on crop yields in many areas around the globe, including several global bread baskets such as the United States and Australia. This study will increase understanding of extreme weather-related implications on global food production, which is relevant also in the context of climate change, as the frequency of extreme weather events is likely to increase in many regions worldwide.</p>


2014 ◽  
Vol 51 (1) ◽  
pp. 17-41 ◽  
Author(s):  
H. NEZOMBA ◽  
F. MTAMBANENGWE ◽  
R. CHIKOWO ◽  
P. MAPFUMO

SUMMARYResearch has proved that integrated soil fertility management (ISFM) can increase crop yields at the field and farm scales. However, its uptake by smallholder farmers in Africa is often constrained by lack of technical guidelines on effective starting points and how the different ISFM options can be combined to increase crop productivity on a sustainable basis. A 4-year study was conducted on sandy soils (<10% clay) on smallholder farms in eastern Zimbabwe to assess how sequencing of different ISFM options may lead to incremental gains in soil productivity, enhanced efficiency of resource use, and increase crop yields at field scale. The sequences were primarily based on low-quality organic resources, nitrogen-fixing green manure and grain legumes, and mineral fertilizers. To enable comparison of legume and maize grain yields among treatments, yields were converted to energy (kilocalories) and protein (kg) equivalents. In the first year, ‘Manure-start’, a cattle manure-based sequence, yielded 3.4 t ha−1of maize grain compared with 2.5 and 0.4 t ha−1under a woodland litter-based sequence (‘Litter-start’) and continuous unfertilized maize control, respectively. The ‘Manure-start’ produced 12 × 106kilocalories (kcal); significantly (p< 0.05) out-yielding ‘Litter start’ and a fertilizer-based sequence (‘Fertilizer-start’) by 50%. A soyabean-based sequence, ‘Soya-start’, gave the highest protein production of 720 kg against <450 kg for the other sequencing treatments. In the second year, the sequences yielded an average of 5.7 t ha−1of maize grain, producing over 19 × 106kcal and 400 kg of protein. Consequently, the sequences significantly out-performed farmers’ designated poor fields by ~ fivefold. In the third year, ‘Soya-start’ gave the highest maize grain yield of 3.7 t ha−1; translating to 1.5 and 3 times more calories than under farmers’ designated rich and poor fields, respectively. In the fourth year, ‘Fertilizer-start’ produced the highest calories and protein of 14 × 106kcal and 340 kg, respectively. Cumulatively over 4 years, ‘Manure-start’ and ‘Soya-start’ gave the highest calories and protein, out-performing farmers’ designated rich and poor fields. Sunnhemp (Crotalaria junceaL.)-based sequences, ‘Green-start’ and ‘Fertilizer-start’, recorded the highest gains in plant available soil P of ~ 4 mg kg−1over the 4-year period. Assessment of P agronomic efficiencies showed significantly more benefits under the ISFM-based sequences than under farmers’ designated rich and poor fields. Based on costs of seed, nutrients and labour, ‘Soya-start’ gave the best net present value over the 4 years, while ‘Fertilizer-start’ was financially the least attractive. Overall, the ISFM-based sequences were more profitable than fields designated as rich and poor by farmers. We concluded that ISFM-based sequences can provide options for farm-level intensification by different categories of smallholder farmers in Southern Africa.


Author(s):  
Shraddhanand Shukla ◽  
Kristi R. Arsenault ◽  
Abheera Hazra ◽  
Christa Peters-Lidard ◽  
Randal D. Koster ◽  
...  

Abstract. The region of southern Africa (SA) has a fragile food economy and is vulnerable to frequent droughts. In 2015–2016, an El Niño-driven drought resulted in major maize production shortfalls, food price increases, and livelihood disruptions that pushed 29 million people into severe food insecurity. Interventions to mitigate food insecurity impacts require early warning of droughts – preferably as early as possible before the harvest season (typically, starting in April) and lean season (typically, starting in November). Hydrologic monitoring and forecasting systems provide a unique opportunity to support early warning efforts, since they can provide regular updates on available rootzone soil moisture (RZSM), a critical variable for crop yield, and provide forecasts of RZSM by combining the estimates of antecedent soil moisture conditions with climate forecasts. For SA, this study documents the predictive capabilities of a recently developed NASA Hydrological Forecasting and Analysis System (NHyFAS). The NHyFAS system's ability to forecast and monitor the 2015/2016 drought event is evaluated. The system's capacity to explain interannual variations in regional crop yield and identify below-normal crop yield events is also evaluated. Results show that the NHyFAS products would have identified the regional severe drought event, which peaked during December–February of 2015/2016, at least as early as 1 November 2015. Next, it is shown that February RZSM forecasts produced as early as 1 November (4–5 months before the start of harvest and about a year before the start of the next lean season) correlate fairly well with regional crop yields (r = 0.49). The February RZSM monitoring product, available in early March, correlates with the regional crop yield with higher skill (r = 0.79). It is also found that when the February RZSM forecast produced on November 1 is indicated to be in the lowest tercile, the detrended regional crop yield is below normal about two-thirds (significance level ~ 86 %) of the time. Furthermore, when the February RZSM monitoring product (available in early March) indicates a lowest tercile value, the crop yield is always below normal, at least over the sample years considered. These results indicate that the NHyFAS products can effectively support food insecurity early warning in the SA region.


Author(s):  
HM Ayele

Usually crop failure due to moisture shortage in soils is very much common due to high evaporation. Sometimes famers try to combat this problem by using mulches of crop residues in the study area. However, this is also highly challenged shortage because the crop residues used as feed for animals. Therefore, using the advantage and opportunity of cover legumes as an intercrop is the solution of the problems simultaneously in addition to their contribution improving soil nutrient balance and other many fold benefits. Therefore, this study aimed for evaluating the effect of maize-legume covers intercropping on soil moisture improvement and crop yield in moisture stress areas of the study area. The entire grain yield of maize and legumes, as well as soil moisture data were collected. The result on soil moisture revealed that intercropping of maize with cowpea had better soil moisture contents during active crop development (15.98%) and after harvest (16.70%) in average as compared to the others. The current finding also showed that adopting intercropping of maize with cowpea-boosted yield by 5256.24 kg ha-1 maize and 977.45 kg ha-1 cowpea in average with higher moisture improvement as compare to the other treatments. Therefore, intercropping of maize with cowpea is important to farmers since it would provide additional crop yield with the same piece of land. However, to get considerable changes on soil and water balances, other soil physic-chemical properties and crop yields, conducting similar studies in more than two years period at permanent field plots is paramount in the future. Int. J. Agril. Res. Innov. Tech. 10(1): 80-86, June 2020


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 306
Author(s):  
Martha Swamila ◽  
Damas Philip ◽  
Adam Meshack Akyoo ◽  
Stefan Sieber ◽  
Mateete Bekunda ◽  
...  

Declining soil fertility is one of the major problems facing producers of field crops in most dryland areas of Sub-Saharan Africa. In response to the declining soil fertility, extensive participatory research has been undertaken by the World Agroforestry (ICRAF) and smallholder farmers in Dodoma region, Tanzania. The research has, amongst others, led to the development of Gliricidia agroforestry technology. The positive impact of Gliricidia intercropping on crop yields has been established. However, information on farmers’ willingness and ability to adopt the Gliricidia agroforestry technology on their farms is limited. This study predicts the adoption of Gliricidia agroforestry and conventional mineral fertilizer use technology. Focus Group Discussions (FGDs) were conducted with groups of farmers, purposively selected based on five sets of criteria: (i) at least 2 years of experience in either trying or using Gliricidia agroforestry technology, (ii) at least 1 year of experience in either trying or using the mineral fertilizer technology (iii) at least 10 years of living in the study villages, (iv) the age of 18 years and above, and (v) sex. The Adoption and Diffusion Outcome Prediction Tool (ADOPT) was used to predict the peak adoption levels and the respective time in years. A sensitivity analysis was conducted to assess the effect of change in adoption variables on predicted peak adoption levels and time to peak adoption. The results revealed variations in peak adoption levels with Gliricidia agroforestry technology exhibiting the highest peak of 67.6% in 12 years, and that the most influential variable to the peak adoption is the upfront cost of investing in Gliricidia agroforestry and fertilizer technologies. However, in Gliricidia agroforestry technology most production costs are incurred in the first year of project establishment but impact the long term biophysical and economic benefits. Moreover, farmers practicing agroforestry technology accrue environmental benefits, such as soil erosion control. Based on the results, it is plausible to argue that Gliricidia agroforestry technology has a high adoption potential and its adoption is influenced by investment costs. We recommend two actions to attract smallholder farmers investing in agroforestry technologies. First, enhancing farmers’ access to inputs at affordable prices. Second, raising farmers’ awareness of the long-term environmental benefits of Gliricidia agroforestry technology.


1977 ◽  
Vol 13 (1) ◽  
pp. 51-59 ◽  
Author(s):  
S. Nairizi ◽  
J. R. Rydzewski

SUMMARYCrop yield response to soil moisture deficiency varies for different crops and also depends on the time of its occurrence in the growth cycle. Many attempts have been made to derive a single relationship between total water consumption and yield for various crops, but this has proved of limited use, because the effect of time was omitted from such production functions. Jensen (1968) derived two expressions, for determinate and indeterminate crops, bringing the time element into his expressions indirectly by a parameter (λi) which defines the relative sensitivity of the crop to soil moisture stress at different growing stages. The usefulness of this approach depends on the accuracy with which this parameter can be determined. The aim of this paper is to derive λi for a number of crops from available experimental data and subsequently to find a way of computing the quantitative contribution of each single irrigation application to the crop yield. This should lead to a more rational use of irrigation water resources.


2015 ◽  
Vol 16 (2) ◽  
pp. 904-916 ◽  
Author(s):  
Husayn El Sharif ◽  
Jingfeng Wang ◽  
Aris P. Georgakakos

Abstract Agricultural models, such as the Decision Support System for Agrotechnology Transfer cropping system model (DSSAT-CSM), have been developed for predicting crop yield at field and regional scales and to provide useful information for water resources management. A potentially valuable input to agricultural models is soil moisture. Presently, no observations of soil moisture exist covering the entire United States at adequate time (daily) and space (~10 km or less) resolutions desired for crop yield assessments. Data products from NASA’s upcoming Soil Moisture Active Passive (SMAP) mission will fill the gap. The objective of this study is to demonstrate the usefulness of the SMAP soil moisture data in modeling and forecasting crop yields and irrigation amount. A simple, efficient data assimilation algorithm is presented in which the agricultural crop model DSSAT-CSM is constrained to produce modeled crop yield and irrigation amounts that are consistent with SMAP-type data. Numerical experiments demonstrate that incorporating the SMAP data into the agricultural model provides an added benefit of reducing the uncertainty of modeled crop yields when the weather input data to the crop model are subject to large uncertainty.


Sign in / Sign up

Export Citation Format

Share Document