scholarly journals Lactobacillus curvatus CP2998 Prevents Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes

2019 ◽  
Vol 65 (5) ◽  
pp. 455-458 ◽  
Author(s):  
Ryo KATSUKI ◽  
Shinji SAKATA ◽  
Reiko NAKAO ◽  
Katsutaka OISHI ◽  
Yasunori NAKAMURA
Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 49
Author(s):  
Laura Salvadori ◽  
Manuela Mandrone ◽  
Tommaso Manenti ◽  
Catia Ercolani ◽  
Luca Cornioli ◽  
...  

Background: Muscle atrophy, i.e., the loss of skeletal muscle mass and function, is an unresolved problem associated with aging (sarcopenia) and several pathological conditions. The imbalance between myofibrillary protein breakdown (especially the adult isoforms of myosin heavy chain, MyHC) and synthesis, and the reduction of muscle regenerative potential are main causes of muscle atrophy. Methods: Starting from one-hundred dried hydroalcoholic extracts of medical plants, we identified those able to contrast the reduction of C2C12 myotube diameter in well-characterized in vitro models mimicking muscle atrophy associated to inflammatory states, glucocorticoid treatment or nutrient deprivation. Based on their ability to rescue type II MyHC (MyHC-II) expression in atrophying conditions, six extracts with different phytochemical profiles were selected, mixed in groups of three, and tested on atrophic myotubes. The molecular mechanism underpinning the effects of the most efficacious formulation, and its efficacy on myotubes obtained from muscle biopsies of young and sarcopenic subjects were also investigated. Results: We identified WST (Withania somnifera, Silybum marianum, Trigonella foenum-graecum) formulation as extremely efficacious in protecting C2C12 myotubes against MyHC-II degradation by stimulating Akt (protein kinase B)-dependent protein synthesis and p38 MAPK (p38 mitogen-activated protein kinase)/myogenin-dependent myoblast differentiation. WST sustains trophism in C2C12 and young myotubes, and rescues the size, developmental MyHC expression and myoblast fusion in sarcopenic myotubes. Conclusion: WST strongly counteracts muscle atrophy associated to different conditions in vitro. The future validation in vivo of our results might lead to the use of WST as a food supplement to sustain muscle mass in diffuse atrophying conditions, and to reverse the age-related functional decline of human muscles, thus improving people quality of life and reducing social and health-care costs.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 284 ◽  
Author(s):  
Min-Kyeong Lee ◽  
Jeong-Wook Choi ◽  
Youn Hee Choi ◽  
Taek-Jeong Nam

Dexamethasone (DEX), a synthetic glucocorticoid, causes skeletal muscle atrophy. This study examined the protective effects of Pyropia yezoensis peptide (PYP15) against DEX-induced myotube atrophy and its association with insulin-like growth factor-I (IGF-I) and the Akt/mammalian target of rapamycin (mTOR)-forkhead box O (FoxO) signaling pathway. To elucidate the molecular mechanisms underlying the effects of PYP15 on DEX-induced myotube atrophy, C2C12 myotubes were treated for 24 h with 100 μM DEX in the presence or absence of 500 ng/mL PYP15. Cell viability assays revealed no PYP15 toxicity in C2C12 myotubes. PYP15 activated the insulin-like growth factor-I receptor (IGF-IR) and Akt-mTORC1 signaling pathway in DEX-induced myotube atrophy. In addition, PYP15 markedly downregulated the nuclear translocation of transcription factors FoxO1 and FoxO3a, and inhibited 20S proteasome activity. Furthermore, PYP15 inhibited the autophagy-lysosomal pathway in DEX-stimulated myotube atrophy. Our findings suggest that PYP15 treatment protected against myotube atrophy by regulating IGF-I and the Akt-mTORC1-FoxO signaling pathway in skeletal muscle. Therefore, PYP15 treatment appears to exert protective effects against skeletal muscle atrophy.


2013 ◽  
Vol 59 (4) ◽  
pp. 317-324 ◽  
Author(s):  
Katsuya HIRASAKA ◽  
Tasuku MAEDA ◽  
Chika IKEDA ◽  
Marie HARUNA ◽  
Shohei KOHNO ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 529
Author(s):  
Seo-Young Kim ◽  
Ginnae Ahn ◽  
Hyun-Soo Kim ◽  
Jun-Geon Je ◽  
Kil-Nam Kim ◽  
...  

Inflammation affects various organs of the human body, including skeletal muscle. Phlorotannins are natural biologically active substances found in marine brown algae and exhibit anti-inflammatory activities. In this study, we focused on the effects of phlorotannins on anti-inflammatory activity and skeletal muscle cell proliferation activity to identify the protective effects on the inflammatory myopathy. First, the five species of marine brown algal extracts dramatically inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without toxicity at all the concentrations tested. Moreover, the extracts collected from Ishige okamurae (I. okamurae) significantly increased cell proliferation of C2C12 myoblasts compared to the non-treated cells with non-toxicity. In addition, as a result of finding a potential tumor necrosis factor (TNF)-α inhibitor that regulates the signaling pathway of muscle degradation in I. okamurae-derived natural bioactive compounds, Diphlorethohydroxycarmalol (DPHC) is favorably docked to the TNF-α with the lowest binding energy and docking interaction energy value. Moreover, DPHC down-regulated the mRNA expression level of pro-inflammatory cytokines and suppressed the muscle RING-finger protein (MuRF)-1 and Muscle Atrophy F-box (MAFbx)/Atrgoin-1, which are the key protein muscle atrophy via nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPKs) signaling pathways in TNF-α-stimulated C2C12 myotubes. Therefore, it is expected that DPHC isolated from IO would be developed as a TNF-α inhibitor against inflammatory myopathy.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Min-Kyeong Lee ◽  
Nam Taek-Jeong ◽  
Youn Hee Choi

Abstract Proinflammatory cytokines induce ubiquitin-proteasome-dependent proteolysis by activating intracellular factors in skeletal muscle, leading to muscle atrophy. Therefore, we investigated the protective effect of Pyropia yezoensis crude protein (PYCP) on tumor necrosis factor (TNF)-α-induced muscle atrophy in vitro. Mouse skeletal muscle C2C12 myotubes were treated for 48 h with TNF-α (20 ng/mL) in the presence or absence of PYCP (25, 50, and 100 μg/mL). PYCP at concentrations up to 100 μg/mL did not affect cell viability. Exposure to TNF-α for 48 h significantly decreased the diameter of myotubes, which was increased by treatment with 25, 50, and 100 μg/mL PYCP. PYCP inhibited TNF-α-induced intracellular reactive oxygen species accumulation in C2C12 myotubes. In addition, PYCP significantly reduced the levels of phosphorylated p38 and JNK. Moreover, by inhibiting the degradation of inhibitor of kappaB-α, PYCP significantly suppressed the TNF-α-induced increased transcriptional activity and nuclear translocation of nuclear factor-kappaB (NF-κB). Furthermore, PYCP inhibited E3-ubiquitin ligases in TNF-α-treated C2C12 myotubes. In conclusion, PYCP ameliorated TNF-α-induced muscle atrophy by inhibiting the mitogen-activated protein kinase-mediated NF-κB pathway, indicating that it has therapeutic potential for related disorders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Wang ◽  
Xin-Feng Jiao ◽  
Cheng Wu ◽  
Xiao-Qing Li ◽  
Hui-Xian Sun ◽  
...  

AbstractSkeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1974
Author(s):  
Dulce Peris-Moreno ◽  
Mélodie Malige ◽  
Agnès Claustre ◽  
Andrea Armani ◽  
Cécile Coudy-Gandilhon ◽  
...  

The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1–UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3527
Author(s):  
Paula P. Freire ◽  
Sarah S. Cury ◽  
Letícia O. Lopes ◽  
Geysson J. Fernandez ◽  
Jianming Liu ◽  
...  

Interleukin-6 (IL-6) is a pro-inflammatory cytokine associated with skeletal muscle wasting in cancer cachexia. The control of gene expression by microRNAs (miRNAs) in muscle wasting involves the regulation of thousands of target transcripts. However, the miRNA-target networks associated with IL6-induced muscle atrophy remain to be characterized. Here, we show that IL-6 promotes the atrophy of C2C12 myotubes and changes the expression of 20 miRNAs (5 up-regulated and 15 down-regulated). Gene Ontology analysis of predicted miRNAs targets revealed post-transcriptional regulation of genes involved in cell differentiation, apoptosis, migration, and catabolic processes. Next, we performed a meta-analysis of miRNA-published data that identified miR-497-5p, a down-regulated miRNAs induced by IL-6, also down-regulated in other muscle-wasting conditions. We used miR-497-5p mimics and inhibitors to explore the function of miR-497-5p in C2C12 myoblasts and myotubes. We found that miR-497-5p can regulate the expression of the cell cycle genes CcnD2 and CcnE1 without affecting the rate of myoblast cellular proliferation. Notably, miR-497-5p mimics induced myotube atrophy and reduced Insr expression. Treatment with miR-497-5p inhibitors did not change the diameter of the myotubes but increased the expression of its target genes Insr and Igf1r. These genes are known to regulate skeletal muscle regeneration and hypertrophy via insulin-like growth factor pathway and were up-regulated in cachectic muscle samples. Our miRNA-regulated network analysis revealed a potential role for miR-497-5p during IL6-induced muscle cell atrophy and suggests that miR-497-5p is likely involved in a compensatory mechanism of muscle atrophy in response to IL-6.


2020 ◽  
Vol 21 (3) ◽  
pp. 1111 ◽  
Author(s):  
Hongwei Geng ◽  
Qinglong Song ◽  
Yunyun Cheng ◽  
Haoyang Li ◽  
Rui Yang ◽  
...  

Dexamethasone (Dex) has been widely used as a potent anti-inflammatory, antishock, and immunosuppressive agent. However, high dose or long-term use of Dex is accompanied by side effects including skeletal muscle atrophy, whose underlying mechanisms remain incompletely understood. A number of microRNAs (miRNAs) have been shown to play key roles in skeletal muscle atrophy. Previous studies showed significantly increased miR-322 expression in Dex-treated C2C12 myotubes. In our study, the glucocorticoid receptor (GR) was required for Dex to increase miR-322 expression in C2C12 myotubes. miR-322 mimic or miR-322 inhibitor was used for regulating the expression of miR-322. Insulin-like growth factor 1 receptor (IGF1R) and insulin receptor (INSR) were identified as target genes of miR-322 using luciferase reporter assays and played key roles in Dex-induced muscle atrophy. miR-322 overexpression promoted atrophy in Dex-treated C2C12 myotubes and the gastrocnemius muscles of mice. Conversely, miR-322 inhibition showed the opposite effects. These data suggested that miR-322 contributes to Dex-induced muscle atrophy via targeting of IGF1R and INSR. Furthermore, miR-322 might be a potential target to counter Dex-induced muscle atrophy. miR-322 inhibition might also represent a therapeutic approach for Dex-induced muscle atrophy.


2014 ◽  
Vol 306 (6) ◽  
pp. C551-C558 ◽  
Author(s):  
Matthew B. Hudson ◽  
Myra E. Woodworth-Hobbs ◽  
Bin Zheng ◽  
Jill A. Rahnert ◽  
Mitsi A. Blount ◽  
...  

Skeletal muscle atrophy is prevalent in chronic diseases, and microRNAs (miRs) may play a key role in the wasting process. miR-23a was previously shown to inhibit the expression of atrogin-1 and muscle RING-finger protein-1 (MuRF1) in muscle. It also was reported to be regulated by cytoplasmic nuclear factor of activated T cells 3 (NFATc3) in cardiomyocytes. The objective of this study was to determine if miR-23a is regulated during muscle atrophy and to evaluate the relationship between calcineurin (Cn)/NFAT signaling and miR-23a expression in skeletal muscle cells during atrophy. miR-23a was decreased in the gastrocnemius of rats with acute streptozotocin-induced diabetes, a condition known to increase atrogin-1 and MuRF1 expression and cause atrophy. Treatment of C2C12 myotubes with dexamethasone (Dex) for 48 h also reduced miR-23a as well as RCAN1.4 mRNA, which is transcriptionally regulated by NFAT. NFATc3 nuclear localization and the amount of miR-23a decreased rapidly within 1 h of Dex administration, suggesting a link between Cn signaling and miR-23a. The level of miR-23a was lower in primary myotubes from mice lacking the α- or β-isoform of the CnA catalytic subunit than wild-type mice. Dex did not further suppress miR-23a in myotubes from Cn-deficient mice. Overexpression of CnAβ in C2C12 myotubes prevented Dex-induced suppression of miR-23a. Finally, miR-23a was present in exosomes isolated from the media of C2C12 myotubes, and Dex increased its exosomal abundance. Dex did not alter the number of exosomes released into the media. We conclude that atrophy-inducing conditions downregulate miR-23a in muscle by mechanisms involving attenuated Cn/NFAT signaling and selective packaging into exosomes.


Sign in / Sign up

Export Citation Format

Share Document