The Role of 1 ,25-Dihydroxyvitamin D3 in the Myeloid Cell Differentiation

1989 ◽  
Vol 191 (3) ◽  
pp. 214-220 ◽  
Author(s):  
T. Suda
Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 2038-2046 ◽  
Author(s):  
Alex Bukrinsky ◽  
Kevin J. P. Griffin ◽  
Yan Zhao ◽  
Shuo Lin ◽  
Utpal Banerjee

The ETS protein Spi-1/Pu.1 plays a pivotal and widespread role throughout hematopoiesis in many species. This study describes the identification, characterization, and functional analysis of a new zebrafish spi transcription factor spi-1–like (spi-1l) that is expressed in primitive myeloid cells, erythro-myelo progenitor cells, and in the adult kidney. Spi-1l functions genetically downstream of etsrp, scl, and spi-1/pu.1 in myeloid differentiation. Spi-1l is coexpressed in a subset of spi-1/pu.1 cells and its function is necessary and sufficient for macrophage and granulocyte differentiation. These results establish a critical role for spi-1l in zebrafish myeloid cell differentiation.


Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3528-3534 ◽  
Author(s):  
N Dugas ◽  
MD Mossalayi ◽  
A Calenda ◽  
A Leotard ◽  
P Becherel ◽  
...  

All trans retinoic acid and vitamin D3 derivatives are well known for their antileukemic activity, while the precise mechanism of this effect remains to be clarified. Using human leukemic U937 and THP-1 promonocytic cell lines, we analyzed the effect of all-trans retinoic acid (RA) and/or 1,25-dihydroxyvitamin D3 (VD) on the generation of nitric oxide (NO), a potent antitumoral mediator. U937 cell differentiation with VD or with both RA and VD (RA/VD) correlated with gene transcription and functional expression of inducible nitric oxide synthase (iNOS). Nitrites and L-citrulline were also detected in U937 cell supernatants as soon as 24 hours following cell incubation with VD or RA/VD, but not in cells treated with RA alone. Inhibition of iNOS activity by NG-monomethyl-L-arginine (LNMMA) significantly decreased in vitro U937 cell differentiation with VD and RA/VD as shown by the expression of cell differentiation markers (CD14 and CD68) and by the capacity of these cells to undergo a luminol-dependent chemiluminescence in response to opsonized zymosan. Similar results were obtained using the THP-1 cell line strengthening the role of NO in the VD- and RA/VD-induced growth arrest and terminal differentiation of promonocytic leukemia cells.


2010 ◽  
Vol 3 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Suzanne M. Krance ◽  
Peter C. Keng ◽  
James Palis ◽  
Nazzareno Ballatori

To better define the role of glutathione (GSH) in cell differentiation, the present study measured GSH concentrations during terminal HL-60 cell differentiation, in the presence and absence of differentiation-inducing agents, and in the presence and absence of GSH altering agents. Interestingly, there was a small transient increase in intracellular GSH levels during dimethyl sulfoxide (DMSO) or 1α,25-dihydroxyvitamin D3 (VD3) induced differentiation. This increase coincided with an increase in nitroblue tetrazolium (NBT) reduction capacity, a measure of superoxide anion production, but there was no apparent change in the GSH/glutathione disulfide (GSSG) ratio. Surprisingly, treatment of cells with low doses of 1-chloro-2,4-dinitrobenzene (CDNB; 5 µM) or diethylmaleate (DEM; 0.5 mM), which transiently deplete GSH levels to about 40% of control levels, resulted in enhanced differentiation of HL-60 cells exposed to VD3 or all-trans-retinoic acid (ATRA), as well as under un-induced conditions (i.e., spontaneous differentiation). Enhanced differentiation occurred when cells were treated with the GSH-depleting agents 4 hours after treatment with differentiation inducers. These findings indicate that intracellular GSH levels are regulated in a complex fashion during HL-60 cell differentiation, and that transient GSH depletion using low doses of CDNB and DEM enhances the differentiation process.


1992 ◽  
Vol 262 (1) ◽  
pp. C235-C242 ◽  
Author(s):  
A. Sellmayer ◽  
S. M. Krane ◽  
A. J. Ouellette ◽  
J. V. Bonventre

Two closely related Ca(2+)-binding proteins, migration inhibitory factor-related protein (MRP)-8 and MRP-14, are synthesized under specific conditions of myeloid cell differentiation. Because 1 alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] induces myeloid cell differentiation and expression of other S-100 class calcium-binding proteins, we examined the effects of 1,25-(OH)2D3 on MRP mRNA levels in human U-937 histiocytic lymphoma cells. 1,25-(OH)2D3 increased MRP-8 and MRP-14 mRNA levels in a time- and dose-dependent manner. MRP mRNA levels were maximal at 24 h and remained elevated for at least 96 h after exposure of the cells to 1,25-(OH)2D3. MRP-8 mRNA accumulation required 100- to 1,000-fold higher concentrations of 25-(OH)D3, which binds to the 1,25-(OH)2D3 intracellular receptor with 100- to 1,000-fold lower affinity. Other differentiating agents, dimethyl sulfoxide, retinoic acid, and dexamethasone, also increased levels of MRP-8 and MRP-14 mRNA. Phorbol myristate acetate enhanced MRP-14 mRNA levels to a greater extent than MRP-8 mRNA levels, suggesting differential regulation of MRP gene expression by protein kinase C. The 1,25-(OH)2D3-induced relative increase in MRP mRNA levels was not changed by a 1,000-fold reduction in extracellular [Ca2+]. Thus 1,25-(OH)2D3 is potentially a physiological modulator of MRP gene expression. Expression of the MRP-8 and MRP-14 genes may be important for differentiation of myeloid cells.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2753-2762 ◽  
Author(s):  
Sushil G. Rane ◽  
James K. Mangan ◽  
Arshad Amanullah ◽  
Brian C. Wong ◽  
Renu K. Vora ◽  
...  

Jak3, a member of the Janus kinase family of cytoplasmic tyrosine kinases, is expressed at low levels in immature hematopoietic cells and its expression is dramatically up-regulated during the terminal differentiation of these cells. To better understand the role of Jak3 in myeloid cell development, we have investigated the role of Jak3 in myeloid cell differentiation using the 32Dcl3 cell system. Our studies show that Jak3 is a primary response gene for granulocyte colony-stimulating factor (G-CSF) and the accumulation of tyrosine phosphorylated Jak3 correlated with cell growth inhibition and terminal granulocytic differentiation in response to G-CSF. Ectopic overexpression of Jak3 in 32Dcl3 cells resulted in an acceleration of the G-CSF–induced differentiation program that was preceded by G1 cell cycle arrest, which was associated with the up-regulation of the cyclin-dependent kinase inhibitor p27Kip1 and down-regulation of Cdk2, Cdk4, Cdk6, and Cyclin E. In addition, ectopic overexpression of Jak3 appears to result in the inactivation of PKB/Akt and Stat3-mediated proliferative pathways in the presence of G-CSF. Similarly, overexpression of Jak3 in primary bone marrow cells resulted in an acceleration of granulocytic differentiation in the presence of granulocyte-macrophage colony-stimulating factor, which was associated with their growth arrest in the G1 phase of the cell cycle. Taken together, these results indicate that Jak3-mediated signals play an important role in myeloid cell differentiation.


1990 ◽  
Vol 265 (26) ◽  
pp. 15823-15831 ◽  
Author(s):  
T. Okazaki ◽  
A. Bielawska ◽  
R.M. Bell ◽  
Y.A. Hannun

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1509-1509
Author(s):  
Jianping Li ◽  
Fuhong He ◽  
Peng Zhang ◽  
Shi Chen ◽  
Hui Shi ◽  
...  

Abstract Somatic mutations and chromosomal translocations of genes have emerged as major drivers in a range of hematopoietic malignancies. While ASXL1 is mutated in all forms of myeloid malignancies, ASXL2 is specifically mutated in t(8;21) AML patients. ASXL1 and ASXL2 mutations are mutually exclusive in t(8;21) AML. Despite the importance of ASXL2 mutations in clinical, it's role in leukemogenesis remain unknown. In the current study, we sought to dissect the role of ASXL2 in normal hematopoiesis and to identify the molecular mechanisms by which Asxl2 loss contributes to myeloid malignancies. In the current study, we utilized a mouse model of Asxl2 to characterize the hematopoietic features of in vivo. Asxl2-/- mice were characterized by pancytopenia and dysplastic features, including hyposegmented (bilobed) neutrophils with fine nuclear bridging (consistent with pseudo Pelger-Huët) and increased number of polychromatophilic red blood cells (RBCs), reminiscent of myelodysplastic syndrome (MDS). Flow cytometric analyses revealed that Asxl2-/- mice had an increased proportion of granulocytic/monocytic cells (Gr-1+/Mac1+) in the PB, BM and spleens compared to WT mice. The histologic analysis of the Asxl2+/- and Asxl2-/- spleen sections showed disrupted splenic architecture with an increased proportion of myeloid cells and massive accumulation of myeloperoxidase (MPO) positive cells in WT spleens. Asxl2-/- mice had an increased long-term (LH)-HSCs and granulocyte-macrophage progenitor (GMP) cells compared to WT mice.Consistently, the paired-daughter cell assays revealed that Asxl2-/- CD34-LSK BM cells had a higher proportion of cells with symmetric self-renewal capacity (SS, 62%) than WT cells (33%). In contrast, a significant reduction in the cells with symmetric differentiation potential was observed in Asxl2-/- HSCs (18%) compared to WT HSCs (40%), indicating a critical role of ASXL2 in the balance between the symmetric and asymmetric division of HSCs. Transplantation assays revealed that recipients transplanted with Asxl2-/- and Asxl2+/- bone marrow cells had shortened lifespan due to the development of MDS or AML, suggesting a cell-autonomous effect of Asxl2-loss in HSC/HPC functions. Furthermore, Asxl2-loss further increase the colony-forming potential and colony replating capacity of AML1-ETO expressing HSCs in vitro, suggesting a cooperative effect between AML1/ETO9a and Asxl2+/-to promote HSC self-renewal. RNA-seq analysis showed a unique signature of Asxl2-/- LK cells compared to WT LK cells. Gene set enrichment analysis revealed that altered expressed genes in Asxl2-/-LK cells were enriched in myeloid cell differentiation, hematopoiesis, apoptosis, and chromatin/nucleosome assembly signature. ChIP-seq analysis showed that differentially expressed genes were associated with dysregulated histone enhancer markers, including H3K27ac, H3K4me1, and H3K4me2. Further analysis demonstrated that the alteration of H3K27ac enrichment had a greater impact on gene expression, in comparison to H3K4me1/2. KEGG pathway analysis showed that genes with differential H3K27ac signals were enriched for hematopoietic cell lineage, cancer signaling pathway and myeloid leukemia development. IPA analysis further confirmed that genes with altered enrichment levels of were enriched in myeloid cell differentiation and apoptosis pathways. Altogether, these data suggest that ASXL2 regulates gene expression mainly through enhancer markers. Our results demonstrate that ASXL2 plays an important role in normal hematopoiesis, and Asxl2-loss in mice is sufficient to cause MDS-like disease and leukemia transformation. These results indicate that ASXL2 functions as a tumor suppressor in myelopoiesis. The Asxl2 knock-out mice present an ideal model for unveiling the mechanisms underlying the Asxl2-loss mediated multiple-step pathogenesis of myeloid malignancies and for testing novel therapeutic agents for myeloid malignant patients with ASXL2 alterations. Further studies to dissect the possible roles of ASXL2alterations in leukemogenesis and to identify therapeutic vulnerabilities they may create are ongoing. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document