Evaluation of the Scott bond test method

2012 ◽  
Vol 27 (2) ◽  
pp. 231-236 ◽  
Author(s):  
Christer Fellers ◽  
Sören Östlund ◽  
Petri Mäkelä

Abstract The Scott bond test is the most commonly used test method for quantifying the delamination resistance of paper and board. The objective of this investigation was to validate the hypothesis that the Scott bond value would be dominated by the total energy under the force elongation curve in a z-directional tensile test. The investigation comprised three types of hand sheets with comparatively low strength values. Three test methods were used to obtain the energy for delamination: 1) Z-test, a z-directional tensile test, 2) Scott bond test, and 3) Simulated Scott bond test, a Scott bond type of test performed in a hydraulic tensile tester. The test data were expressed as a correlation between the failure energy obtained from the Z-test and the other two tests. The results showed that the Scott bond test gave slightly higher values than the Z-test for the weakest paper, but that the value tended to be much higher for the stronger papers. On the other hand the Simulated Scott bond test tended to give lower values than the Z-test. High speed photography was used to reveal several energy consuming mechanisms in the Scott bond test that can explain why this test gave higher values than the Ztest. The lower values from the Simulated Scott bond values are more difficult to explain. At this stage we can suggest that the failure mechanism is different if the paper is delaminated by pure tension or by a gradual delamination as in the Scott bond test.

2016 ◽  
Vol 13 (3) ◽  
pp. 77-94
Author(s):  
Glenn Oliver ◽  
Jonathan Weldon ◽  
Chudy Nwachukwu ◽  
John Andresakis ◽  
John Coonrod ◽  
...  

Currently, there is no industry standard test method for measuring dielectric properties of circuit board materials at frequencies greater than ~10 GHz. Various material vendors and test laboratories apply different approaches to determine these properties. It is common for these different approaches to yield varying values of key properties such as permittivity and loss tangent. The D-24C Task Group of IPC has developed this round-robin program to assess these various methods from the “bottom up” to determine if standardized methods can be agreed upon to provide the industry with more accurate and valid characteristics of dielectrics used in high-frequency and high-speed applications.


2014 ◽  
Vol 31 (6) ◽  
pp. 1330-1336 ◽  
Author(s):  
Claude Duchon ◽  
Christopher Fiebrich ◽  
David Grimsley

Abstract To better understand the undercatch process associated with tipping-bucket rain gauges, a high-speed camera normally used in determining the structure of lightning was employed. The photo rate was set at 500 frames per second to observe the tipping of the bucket in a commonly used tipping-bucket rain gauge. The photos showed detail never seen before as the bucket tipped from one side to the other. Two fixed rain rates of 19.9 mm h−1 (0.78 in. h−1) and 175.2 mm h−1 (6.90 in. h−1), the minimum and maximum available, respectively, were used. The data from four tips at each rain rate were examined. The results show that the time from the beginning of a tip to the time the bucket assembly is horizontal—defined as the period during which undercatch occurs—was an average of 0.450 s for the eight cases. The average time for a complete tip was 0.524 s; thus, the vast majority of the time of a tip, 86%, is spent in undercatch mode. Because there was no apparent dependence of these times on rain rate, it should be possible to apply an accurate linear correction for undercatch as a function of rain rate given the time that undercatch occurs during a tip. Over all eight tips, the undercatch was found to be 0.98% for the 19.9 mm h−1 rate and 8.78% for the 175.2 mm h−1 rate. The procedure used to estimate the undercatch is described. Slow motion videos of the tipping of a bucket are available online.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 344
Author(s):  
Jiacheng Peng ◽  
Jianwei Jiang ◽  
Jianbing Men ◽  
Jinlin Li ◽  
Dongkang Zhou ◽  
...  

An analysis of the penetration–explosion (PE) effects of four distributions of inactive/active composite jets shows that a well-designed inactive/active double-layer liner can promote composite jet damage. Penetration experiments were then carried out for shaped charge jets having a single inactive (Cu) liner or an inactive/active (Cu/Al) double-layer liner with variable liner height. The behaviors and firelight patterns of the different jets were captured by high-speed photography. The perforation, deformation area, and deflection were measured for each plate, showing that the Cu/Al jets have stronger PE effects. Numerical simulation shows that the tip of the composite jet generated from the full-height liner is only Cu, whereas for the other jet, from the double-layer liner, Cu is almost wrapped entirely by Al.


2021 ◽  
Author(s):  
Noura Sinno

Many preventive measures showed improved performance of concrete against alkali-silica reaction (ASR) based on the concrete prism test (CPT) described in the Canadian and American Standards, CSA A23.2-14A and ASTM C1293. However, research has shown that preventive measures that limited the 2-year expansion in the concrete prism test produced late expansion after 7-15 years when tested in the field. The objective of this research is to understand the possible reasons for this late expansion under field conditions and to come up with modified approach to determine the level of supplementary cementing materials (SCM) needed to mitigate the long-term expansion. The research mainly focuses on studying two possible reasons to explain the late expansion. The first reason is the rate and ultimate hydration of SCM, where their capacity to bind alkalis under CPT could be higher than those under field conditions. The other reason for the late expansion could be the geometry and size of the CPT samples which might reduce the expansion due to the excessive alkali leaching. Larger samples showed less leaching compared to standard prisms. 100-mm cylinders showed higher expansion than 75-mm standard prisms; however, both sample shapes showed similar expansions for one tested aggregate when used with SCM. In addition, the capacity of SCM to bind alkalis was shown to be higher at 38ºC compared to the other two tested temperatures investigated in this study: 23ºC and 60ºC. Samples with SCM at high replacement levels expanded more at 60ºC compared to 38ºC. Due to their reduced leaching compared to prisms, testing cylinders at 60ºC showed accelerated results reducing the testing duration to one year compared to the standard test duration of two years. Moreover, a new way to predict the minimum levels of SCM required to mitigate expansion due to alkali-silica reaction is presented showing better correlation with the field. Finally, a fast and reliable test method is suggested to evaluate the reactivity of mineral fillers by adapting and adopting the current test methods available for ASR testing.


2011 ◽  
Vol 108 ◽  
pp. 18-23
Author(s):  
Hui Ying Tang ◽  
De Quan Shi ◽  
Yong Jun Zhao ◽  
Da Yong Li ◽  
Xu Dong Shi ◽  
...  

In this paper, several methods for testing the filling capacity including mechanical test method, vacuum test method, electrometric method, high-speed photography method and X-ray observation method were reviewed, and they can be divided into two classes, namely traditional test method and new test method based on computer. The principles and measurement process of theses methods were summarily described. Through further analysis and comparison, their merits and limitations were indicated respectively. Also, their applications in measuring filling capacity of liquid alloys were exemplified. Finally, it is thought that the development and application of computer technology will benefit to the accuracy improvement of filling capacity.


1992 ◽  
Vol 1 (3) ◽  
pp. 096369359200100
Author(s):  
P Davies

Fracture tests to measure delamination resistance are among the most widely used non-standardized tests currently performed on composite materials. Unfortunately it has been shown that the values obtained from such tests can vary by a factor of two according to specimen geometry and data interpretation. It is therefore essential that a standard test method be developed. This presentation will describe the current efforts directed towards an internationally accepted test method, involving the European Structural Integrity Society (ESIS), ASTM and the Japanese Industrial Standards Group.


2021 ◽  
Author(s):  
Noura Sinno

Many preventive measures showed improved performance of concrete against alkali-silica reaction (ASR) based on the concrete prism test (CPT) described in the Canadian and American Standards, CSA A23.2-14A and ASTM C1293. However, research has shown that preventive measures that limited the 2-year expansion in the concrete prism test produced late expansion after 7-15 years when tested in the field. The objective of this research is to understand the possible reasons for this late expansion under field conditions and to come up with modified approach to determine the level of supplementary cementing materials (SCM) needed to mitigate the long-term expansion. The research mainly focuses on studying two possible reasons to explain the late expansion. The first reason is the rate and ultimate hydration of SCM, where their capacity to bind alkalis under CPT could be higher than those under field conditions. The other reason for the late expansion could be the geometry and size of the CPT samples which might reduce the expansion due to the excessive alkali leaching. Larger samples showed less leaching compared to standard prisms. 100-mm cylinders showed higher expansion than 75-mm standard prisms; however, both sample shapes showed similar expansions for one tested aggregate when used with SCM. In addition, the capacity of SCM to bind alkalis was shown to be higher at 38ºC compared to the other two tested temperatures investigated in this study: 23ºC and 60ºC. Samples with SCM at high replacement levels expanded more at 60ºC compared to 38ºC. Due to their reduced leaching compared to prisms, testing cylinders at 60ºC showed accelerated results reducing the testing duration to one year compared to the standard test duration of two years. Moreover, a new way to predict the minimum levels of SCM required to mitigate expansion due to alkali-silica reaction is presented showing better correlation with the field. Finally, a fast and reliable test method is suggested to evaluate the reactivity of mineral fillers by adapting and adopting the current test methods available for ASR testing.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 24-28
Author(s):  
CORY JAY WILSON ◽  
BENJAMIN FRANK

TAPPI test T811 is the specified method to ascertain ECT relative to box manufacturer’s certification compliance of corrugated fiberboard under Rule 41/ Alternate Item 222. T811 test sample heights were derived from typical board constructions at the time of the test method’s initial development. New, smaller flute sizes have since been developed, and the use of lighter weight boards has become more common. The T811 test method includes sample specifications for typical A-flute, B-flute, and C-flute singlewall (and doublewall and triplewall) structures, but not for newer thinner E-flute or F-flute structures. This research explores the relationship of ECT sample height to measured compressive load, in an effort to determine valid E-flute and F-flute ECT sample heights for use with the T811 method. Through this process, it identifies challenges present in our use of current ECT test methods as a measure of intrinsic compressive strength for smaller flute structures. The data does not support the use of TAPPI T 811 for ECT measurement for E and F flute structures, and demonstrates inconsistencies with current height specifi-cations for some lightweight B flute.


2007 ◽  
Vol 35 (2) ◽  
pp. 94-117 ◽  
Author(s):  
James A. Popio ◽  
John R. Luchini

Abstract This study compares data from the two Society of Automotive Engineers test methods for rolling resistance: J-2452 (Stepwise Coast-Down) and J-1269 (Equilibrium) steady state. The ability of the two methods to evaluate tires was examined by collecting data for 12 tires. The data were analyzed and the data showed that the two methods ranked the tires the same after the data were regressed and the rolling resistance magnitude was calculated at the Standard Reference Condition. In addition, analysis of the two methods using this matched set of testing provided an opportunity to evaluate each of these test standards against the other. It was observed that each test has merits absent from the other.


Sign in / Sign up

Export Citation Format

Share Document