On the nature of joint strength of paper − Effect of dry strength agents – Revisiting the Page equation

2016 ◽  
Vol 31 (3) ◽  
pp. 459-468 ◽  
Author(s):  
Tom Lindström ◽  
Christer Fellers ◽  
Mikael Ankerfors ◽  
Gunborg Glad Nordmark
Keyword(s):  
2011 ◽  
Vol 1 (9) ◽  
pp. 93-96
Author(s):  
S. S. Kadam S. S. Kadam ◽  
◽  
P. A. Dixit P. A. Dixit

2018 ◽  
Vol 33 (5) ◽  
pp. 706-713
Author(s):  
L.-M. Wittmann ◽  
T. Kleffel ◽  
T. Mattner ◽  
D. Drummer
Keyword(s):  

Author(s):  
Prong Kongsubto ◽  
Sirarat Kongwudthiti

Abstract Organic solderability preservatives (OSPs) pad is one of the pad finishing technologies where Cu pad is coated with a thin film of an organic material to protect Cu from oxidation during storage and many processes in IC manufacturing. Thickness of OSP film is a critical factor that we have to consider and control in order to achieve desirable joint strength. Until now, no non-destructive technique has been proposed to measure OSP thickness on substrate. This paper reports about the development of EDS technique for estimating OSP thickness, starting with determination of the EDS parameter followed by establishing the correlation between C/Cu ratio and OSP thickness and, finally, evaluating the accuracy of the EDS technique for OSP thickness measurement. EDS quantitative analysis was proved that it can be utilized for OSP thickness estimation.


Author(s):  
Bob Wettermann

Abstract As the pitch and package sizes of semiconductor devices have shrunk and their complexity has increased, the manual methods by which the packages can be re-bumped or reballed for failure analysis have not kept up with this miniaturization. There are some changes in the types of reballing preforms used in these manual methods along with solder excavation techniques required for packages with pitches as fine as 0.3mm. This paper will describe the shortcomings of the previous methods, explain the newer methods and materials and demonstrate their robustness through yield, mechanical solder joint strength and x-ray analysis.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Tarun Bindal ◽  
Ravindra K. Saxena ◽  
Sunil Pandey

AbstractThe welding of thermoplastic pipes under a shear joint configuration using friction spin welding is investigated. The shear joint configuration consists of two cylindrical and concentric polypropylene plastic parts joined with each other at their interfacing cylindrical surfaces through frictional heat generation. The effects of welding pressure and rotational velocity on the joint overlap distance and joint strength between the parts of polypropylene plastic are evaluated. The study is of a specific application in making plastic pressure vessels and joining of pipes. The joint strength is tested by conducting the hydraulic pressure burst test. The burst test is conducted for welded specimens manufactured using different values of rotational velocity and welding pressure. It is observed that at the constant spin velocities, the welding pressure in the range 64.8 to 65.2 kPa produced better joint strength than the other values of welding pressure in the overall range 64–76 kPa. It is concluded that the suitable welding pressure range to manufacture polypropylene plastic pressure vessels in the shear joint configuration using friction spin welding is 64.5 to 65.2 kPa. Further, it is established that the user can control the joint overlap distance at 64.8 kPa welding pressure by selectively controlling the rotational velocity in the range of 700 to 2500 rpm.


2021 ◽  
Vol 11 (12) ◽  
pp. 5728
Author(s):  
HyeonJeong You ◽  
Minjung Kang ◽  
Sung Yi ◽  
Soongkeun Hyun ◽  
Cheolhee Kim

High-strength steels are being increasingly employed in the automotive industry, requiring efficient welding processes. This study analyzed the materials and mechanical properties of high-strength automotive steels with strengths ranging from 590 MPa to 1500 MPa, subjected to friction stir welding (FSW), which is a solid-phase welding process. The high-strength steels were hardened by a high fraction of martensite, and the welds were composed of a recrystallized zone (RZ), a partially recrystallized zone (PRZ), a tempered zone (TZ), and an unaffected base metal (BM). The RZ exhibited a higher hardness than the BM and was fully martensitic when the BM strength was 980 MPa or higher. When the BM strength was 780 MPa or higher, the PRZ and TZ softened owing to tempered martensitic formation and were the fracture locations in the tensile test, whereas BM fracture occurred in the tensile test of the 590 MPa steel weld. The joint strength, determined by the hardness and width of the softened zone, increased and then saturated with an increase in the BM strength. From the results, we can conclude that the thermal history and size of the PRZ and TZ should be controlled to enhance the joint strength of automotive steels.


Author(s):  
Santosh Kumar ◽  
Vimal Edachery ◽  
Swamybabu Velpula ◽  
Avinash Govindaraju ◽  
Sounak K. Choudhury ◽  
...  

Clinching is an economical sheet joining technique that does not require any consumables. Besides, after its usage, the joints can be recycled without much difficulty, making clinching one of the most sustainable and eco-friendly manufacturing processes and a topic of high research potential. In this work, the influence of surface roughness on the load-bearing capacity (strength) of joints made by the mechanical clinching method in cross-tensile and lap-shear configuration is explored. Additionally, a correlating mathematical model is established between the joint strength and its surface parameters, namely, friction coefficient and wrap angle, based on the belt friction phenomenon. This correlation also explains the generally observed higher strength in lap-shear configuration compared to cross-tensile in clinching joints. From the mathematical correlation, through friction by increasing the average surface roughness, it is possible to increase the strength of the joint. The quality of the thus produced joint is analyzed by cross-sectional examination and comparison with simulation results. Experimentally, it is shown that an increment of >50% in the joint strength is achieved in lap-shear configuration by modifying the surface roughness and increasing the friction coefficient at the joint interface. Further, the same surface modification does not significantly affect the strength in cross-tensile configuration.


Author(s):  
Sharda Pratap Shrivas ◽  
G.K. Agrawal ◽  
Shubhrata Nagpal ◽  
Amit Kumar Vishvakarma ◽  
Ashish Kumar Khandelwal

2013 ◽  
Vol 749 ◽  
pp. 27-30
Author(s):  
Hao Bin Zhou ◽  
Ju Lian Ma ◽  
Xiang Qian Xu

Considering the characteristics of the multilayered ultra-thin sheet stainless steel, by chosen the proper equipments and stored energy welding technology, the optimizing welding parameters are got from the condenser discharge spot welding experiments. The energy stored in the capacitor group is controlled by the energy required during welding and the discharge current is controlled by the size of dynamic resistance in resistance spot welding. So those control ways can better solve the hard problem of choosing welding parameter. The joint strength of ultra-thin sheet stainless steel is ensured by the reasonable quality assessment methods. The processed spot-welded joints are of good quality and appearance.


Sign in / Sign up

Export Citation Format

Share Document