scholarly journals Properties of the frequency spectra of the temperature anomalies of ocean surface and near-surface air in a simple stochastic climate model with fluctuating parameters

Author(s):  
D. A. Petrov

The frequency properties of the ocean surface temperature anomalies (SST) and near-surface air (SAT) spectra are analyzed on the basis of a simple energy balance model of the climate, taking into account the fluctuations of the radiation balance, the latent and sensible heat flux and the velocity of the near-surface wind in two particular cases when the statistical properties of the model parameters are the white noise (small-scale-mesoscale subintervals) and the combined case when the properties of the synoptic subinterval of this parameters are taken into account in the SAT block. It was found that in the first case, the spectra have no features, and in the second they contain selected frequencies in the synoptic and low- frequency intervals. The dependent of their frequencies on model parameters are analyzed. The properties of standard deviations of SST and SAT are investigated.

2021 ◽  
Author(s):  
Michael Haugeneder ◽  
Tobias Jonas ◽  
Dylan Reynolds ◽  
Michael Lehning ◽  
Rebecca Mott

<p>Snowmelt runoff predictions in alpine catchments are challenging because of the high spatial variability of t<span>he snow cover driven by </span>various snow accumulation and ablation processes. In spring, the coexistence of bare and snow-covered ground engages a number of processes such as the enhanced lateral advection of heat over partial snow cover, the development of internal boundary layers, and atmospheric decoupling effects due to increasing stability at the snow cover. The interdependency of atmospheric conditions, topographic settings and snow coverage remains a challenge to accurately account for these processes in snow melt models.<br>In this experimental study, we used an Infrared Camera (VarioCam) pointing at thin synthetic projection screens with negligible heat capacity. Using the surface temperature of the screen as a proxy for the air temperature, we obtained a two-dimensional instantaneous measurement. Screens were installed across the transition between snow-free and snow-covered areas. With IR-measurements taken at 10Hz, we capture<span> the dynamics of turbulent temperature fluctuations</span><span> </span>over the patchy snow cover at high spatial and temporal resolution. From this data we were able to obtain high-frequency, two-dimensional windfield estimations adjacent to the surface.</p><p>Preliminary results show the formation of a stable internal boundary layer (SIBL), which was temporally highly variable. Our data suggest that the SIBL height is very shallow and strongly sensitive to the mean near-surface wind speed. Only strong gusts were capable of penetrating through this SIBL leading to an enhanced energy input to the snow surface.</p><p>With these type of results from our experiments and further measurements this spring we aim to better understand small scale energy transfer processes over patch snow cover and it’s dependency on the atmospheric conditions, enabling to improve parameterizations of these processes in coarser-resolution snow melt models.</p>


Author(s):  
Adil Rasheed ◽  
Jakob Kristoffer Süld ◽  
Mandar Tabib

Accurate prediction of near surface wind and wave height are important for many offshore activities like fishing, boating, surfing, installation and maintenance of marine structures. The current work investigates the use of different methodologies to make accurate predictions of significant wave height and local wind. The methodology consists of coupling an atmospheric code HARMONIE and a wave model WAM. Two different kinds of coupling methodologies: unidirectional and bidirectional coupling are tested. While in Unidirectional coupling only the effects of atmosphere on ocean surface are taken into account, in bidirectional coupling the effects of ocean surface on the atmosphere are also accounted for. The predicted values of wave height and local wind at 10m above the ocean surface using both the methodologies are compared against observation data. The results show that during windy conditions, a bidirectional coupling methodology has better prediction capability.


2009 ◽  
Vol 26 (9) ◽  
pp. 1910-1919 ◽  
Author(s):  
Nikolai Maximenko ◽  
Peter Niiler ◽  
Luca Centurioni ◽  
Marie-Helene Rio ◽  
Oleg Melnichenko ◽  
...  

Abstract Presented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate Experiment (GRACE), which has recently measured the earth’s gravity with unprecedented spatial resolution and accuracy. The second one synthesizes near-surface velocities from a network of ocean drifters, hydrographic profiles, and ocean winds sorted according to the horizontal scales. In the third method, these global datasets are used in the context of the ocean surface momentum balance. The second and third methods are used to improve accuracy of the dynamic topography on fine space scales poorly resolved in the first method. When they are used to compute a multiyear time-mean global ocean surface circulation on a 0.5° horizontal resolution, both contain very similar, new small-scale midocean current patterns. In particular, extensions of western boundary currents appear narrow and strong despite temporal variability and exhibit persistent meanders and multiple branching. Also, the locations of the velocity concentrations in the Antarctic Circumpolar Current become well defined. Ageostrophic velocities reveal convergent zones in each subtropical basin. These maps present a new context in which to view the continued ocean monitoring with in situ instruments and satellites.


2020 ◽  
Author(s):  
Artem Moiseev ◽  
Harald Johnsen ◽  
Johnny Johannessen

<p>The Doppler Centroid Anomaly (DCA) registered by microwave Synthetic Aperture Radar (SAR) contains information about ocean surface motion in the radar line-of-sight direction. The recorded signal is associated with the motion induced by the total wavefield (i.e., both wind waves and swell) and underlying ocean surface currents. Hence, accurate estimates of the wave-induced contribution to the observed DCA is required in order to obtain reliable information about underlying ocean surface current. In this study, we develop an empirical geophysical model function for the estimation of the wave-induced DCA. The study is based on two months of Sentinel-1 SAR Wave mode (WV) DCA observations collocated with wind field at 10m height from the ECMWF model and sea state information from the WAVEWATCH III model.</p><p>Analysis of two months of observations acquired over land showed that thanks to the novel Sentinel-1 DCA calibration, the uncertainty in the data does not exceed 3Hz (corresponding to a radial velocity of 0.21/014 m/s in the near/far range. The relationship between the DCA and the near-surface wind is in agreement with previously reported findings under the assumption of fully developed seas; the DCA is about 24% of the range wind speed at 23° incidence angle and decreasing (up to 50%) with increasing incidence angle from 23° to 36°. However, the difference between upwind (i.e., the wind blows towards antenna) and downwind (i.e., wind blows away from the antenna) configurations is inconsistent from study to study. Reliable information about the wave field indeed helps to describe the spread in the DCA, especially at low and moderate wind speeds, and when the ocean surface is dominated by the remotely generated swell.</p><p>The CDOP model is used as a baseline for estimating the wind-wave-induced Doppler shift. Retraining of the CDOP model for the Sentinel-1 SAR observations (CDOP-S) yielded a significantly better fit. Then, we extended the GMF with parameters of the wavefield (significant wave height, mean wave period and direction) in the moment of SAR acquisition. Combining information about near-surface wind and ocean surface wave fields also considerably improves the accuracy of the wave-induced Doppler shift estimates. In turn,  the accuracy of the ocean surface current retrievals are improved as demonstrated by the promising agreement with the near-surface ocean surface current climatology based on multiyear drifter observations.</p>


2020 ◽  
Author(s):  
Rianne Giesen ◽  
Ana Trindade ◽  
Marcos Portabella ◽  
Ad Stoffelen

<p>The ocean surface wind plays an essential role in the exchange of heat, gases and momentum at the atmosphere-ocean interface. It is therefore crucial to accurately represent this wind forcing in physical ocean model simulations. Scatterometers provide high-resolution ocean surface wind observations, but have limited spatial and temporal coverage. On the other hand, numerical weather prediction (NWP) model wind fields have better coverage in time and space, but do not resolve the small-scale variability in the air-sea fluxes. In addition, Belmonte Rivas and Stoffelen (2019) documented substantial systematic error in global NWP fields on both small and large scales, using scatterometer observations as a reference.</p><p>Trindade et al. (2019) combined the strong points of scatterometer observations and atmospheric model wind fields into ERA*, a new ocean wind forcing product. ERA* uses temporally-averaged differences between geolocated scatterometer wind data and European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis fields to correct for persistent local NWP wind vector biases. Verified against independent observations, ERA* reduced the variance of differences by 20% with respect to the uncorrected NWP fields. As ERA* has a high potential for improving ocean model forcing in the CMEMS Model Forecasting Centre (MFC) products, it is a candidate for a future CMEMS Level 4 (L4) wind product. We present the ongoing work to further improve the ERA* product and invite potential users to discuss their L4 product requirements.</p><p>References:</p><p>Belmonte Rivas, M. and A. Stoffelen (2019): <em>Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT</em>, Ocean Sci., 15, 831–852, doi: 10.5194/os-15-831-2019.</p><p>Trindade, A., M. Portabella, A. Stoffelen, W. Lin and A. Verhoef (2019), <em>ERAstar: A High-Resolution Ocean Forcing Product</em>, IEEE Trans. Geosci. Remote Sens., 1-11, doi: 10.1109/TGRS.2019.2946019.</p>


2020 ◽  
Author(s):  
Frank Siegismund ◽  
Xanthi Oikonomidou ◽  
Philipp Zingerle

<p>The Dynamic ocean Topography (DT) describes the deviation of the true ocean surface from a hypothetical equilibrium state ocean at rest forced by gravity alone. With the geostrophic surface currents obtained from its gradients the DT is an essential parameter for describing the ocean dynamics. Observation-based global temporal Mean geodetic DTs (MDTs) are obtained from the difference of altimetric Mean Sea Surface (MSS) and the geoid height, that equipotential surface of gravity closest to the ocean surface.</p><p>The geoid is provided either as a satellite-only, or a combined model including in addition gravity anomalies derived from satellite altimetry and ground data. In recent years the focus was on satellite-only models, produced from new space-born observations obtained from the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and Ocean Circulation Explorer (GOCE) satellite missions. Moreover, combined geoid models are only cautiously used for MDT calculation, since it is still in question to what extent the gravity information obtained from altimetry is distorted by the MDT information included therein and how this translates into errors of the MDT.</p><p>Here we want to concentrate on MDT models based on recent combined geoid models. An assessment is provided based on comparisons to near-surface drifter data from the Global Drifter Program (GDP). Besides providing a general, global assessment, we focus on signal content on small scales, addressing mainly two questions: 1) Do MDTs obtained from combined geoid models contain signal for scales smaller than resolvable by the<br>satellite-only models? 2) Is there a maximum resolution beyond which no signal is detectable?</p><p>Until recently, these questions couldn't be answered since low resolution MDTs usually contained strong wavy-structured errors and thus needed a strong spatial filtering thereby killing the smallest scales resolved in the MDT. These errors, which worsen with lower resolution, are caused by Gibbs effects provoked by imperfections in bringing the high resolution ocean-only MSS models into spectral consistency with the much lower resolved global geoid model. A new methodology, however, improves the necessary globalization of the MSS. After subtraction of the geoid model, subsequent cutting-off the signal beyond a specific spherical harmonic degree and order (d/o) results in an MDT without any Gibbs effects, also for low resolution models.</p><p>To answer the questions posed above applying the new methodology, the scale-dependent signal in MDTs for different geoid models is presented for a list of cut off d/os. To minimize the influence of noise on the results we concentrate on strong signal Western Boundary Currents like the Gulf Stream and the Kuroshio. For the Gulf Stream results of a high resolution hydrodynamic model are available and presented as an independent method to estimate the scale dependent signal.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 716 ◽  
Author(s):  
Oliveira ◽  
Xue ◽  
Roberts ◽  
Wicker ◽  
Yussouf

Supercell thunderstorms can produce a wide spectrum of vortical structures, ranging from midlevel mesocyclones to small-scale suction vortices within tornadoes. A less documented class of vortices are horizontally-oriented vortex tubes near and/or wrapping about tornadoes, that are observed either visually or in high-resolution Doppler radar data. In this study, an idealized numerical simulation of a tornadic supercell at 100 m grid spacing is used to analyze the three-dimensional (3D) structure and kinematics of horizontal vortices (HVs) that interact with a simulated tornado. Visualizations based on direct volume rendering aided by visual observations of HVs in a real tornado reveal the existence of a complex distribution of 3D vortex tubes surrounding the tornadic flow throughout the simulation. A distinct class of HVs originates in two key regions at the surface: around the base of the tornado and in the rear-flank downdraft (RFD) outflow and are believed to have been generated via surface friction in regions of strong horizontal near-surface wind. HVs around the tornado are produced in the tornado outer circulation and rise abruptly in its periphery, assuming a variety of complex shapes, while HVs to the south-southeast of the tornado, within the RFD outflow, ascend gradually in the updraft.


2020 ◽  
Vol 33 (10) ◽  
pp. 4109-4120 ◽  
Author(s):  
Rhys Parfitt ◽  
Young-Oh Kwon

AbstractThis study suggests that the Gulf Stream influence on the wintertime North Atlantic troposphere is most pronounced when the eddy-driven jet (EDJ) is farthest south and better collocated with the Gulf Stream. Using the reanalysis dataset NCEP-CFSR for December–February 1979–2009, the daily EDJ latitude is separated into three regimes (northern, central, and southern). It is found that the average trajectory of atmospheric fronts covaries with EDJ latitude. In the southern EDJ regime (~19% of the time), the frequency of near-surface atmospheric fronts that pass across the Gulf Stream is maximized. Analysis suggests that this leads to significant strengthening in near-surface atmospheric frontal convergence resulting from strong air–sea sensible heat flux gradients (due to strong temperature gradients in the atmosphere and ocean). In recent studies, it was shown that the pronounced band of time-mean near-surface wind convergence across the Gulf Stream is set by atmospheric fronts. Here, it is shown that an even smaller subset of atmospheric fronts—those associated with a southern EDJ—primarily sets the time mean, due to enhanced Gulf Stream air–sea interaction. Furthermore, statistically significant anomalies in vertical velocity extending well above the boundary layer are identified in association with changes in EDJ latitude. These anomalies are particularly strong for a southern EDJ and are spatially consistent with increases in near-surface atmospheric frontal convergence over the Gulf Stream. These results imply that much of the Gulf Stream influence on the time-mean atmosphere is modulated on synoptic time scales, and enhanced when the EDJ is farthest south.


2020 ◽  
Author(s):  
Beatrice Saggiorato ◽  
Louise Nuijens ◽  
A. Pier Siebesma ◽  
Stephan de Roode ◽  
Irina Sandu ◽  
...  

<p>To study the influence of convective momentum transport (CMT) on wind, boundary layer and cloud evolution in a marine cold air outbreak (CAO) we use Large-Eddy Simulations subjected to different baroclinicity (wind shear) but similar surface forcing. The simulated domain is large enough ( ≈100 × 100 km<sup>2</sup>) to develop typical mesoscale cellular convective structures.  We find that a maximum friction induced by momentum transport (MT) locates in the cloud layer for an increase of geostrophic wind with height (forward shear, FW) and near the surface for a decrease of wind with height (backward shear, BW). Although the total MT always acts as a friction, the interaction of friction-induced cross-isobaric flow with the Coriolis force can develop super-geostrophic winds near the surface (FW) or in the cloud layer (BW). The contribution of convection to MT is evaluated by decomposing the momentum flux by column water vapor and eddy size, revealing that CMT acts to accelerate sub-cloud layer winds under FW shear and that mesoscale circulations contribute significantly to MT for this horizontal resolution (250 m), even if small scale eddies are non-negligible and likely more important as resolution increases. Under FW shear, a deeper boundary layer and faster cloud transition are simulated, because MT acts to increase surface fluxes and wind shear enhances turbulent mixing across cloud tops. Our results show that the coupling between winds and convection is crucial for a range of problems, from CAO lifetime and cloud transitions to ocean heat loss and near-surface wind variability.</p>


2019 ◽  
Vol 49 (9) ◽  
pp. 2447-2468
Author(s):  
Leonel Romero ◽  
J. Carter Ohlmann ◽  
Enric Pallàs-Sanz ◽  
Nicholas M. Statom ◽  
Paula Pérez-Brunius ◽  
...  

AbstractCoincident Lagrangian observations of coastal circulation with surface drifters and dye tracer were collected to better understand small-scale physical processes controlling transport and dispersion over the inner shelf in the Gulf of Mexico. Patches of rhodamine dye and clusters of surface drifters at scales of O(100) m were deployed in a cross-shelf array within 12 km from the coast and tracked for up to 5 h with airborne and in situ observations. The airborne remote sensing system includes a hyperspectral sensor to track the evolution of dye patches and a lidar to measure directional wavenumber spectra of surface waves. Supporting in situ measurements include a CTD with a fluorometer to inform on the stratification and vertical extent of the dye and a real-time towed fluorometer for calibration of the dye concentration from hyperspectral imagery. Experiments were conducted over a wide range of conditions with surface wind speed between 3 and 10 m s−1 and varying sea states. Cross-shelf density gradients due to freshwater runoff resulted in active submesoscale flows. The airborne data allow characterization of the dominant physical processes controlling the dispersion of passive tracers such as freshwater fronts and Langmuir circulation. Langmuir circulation was identified in dye concentration maps on most sampling days except when the near surface stratification was strong. The observed relative dispersion is anisotropic with eddy diffusivities O(1) m2 s−1. Near-surface horizontal dispersion is largest along fronts and in conditions dominated by Langmuir circulation is larger in the crosswind direction. Surface convergence at fronts resulted in strong vertical velocities of up to −66 m day−1.


Sign in / Sign up

Export Citation Format

Share Document