scholarly journals Influence of filter elements on the operation of tribomechanical systems

2021 ◽  
Vol 101 (3) ◽  
pp. 56-62
Author(s):  
M. Dmitrichenko ◽  
A. Savchuk ◽  
Yu. Turitsa ◽  
A. Milanenko ◽  

Oil filter is a part of a gasoline or diesel engine lubrication system designed to clean the engine oil. Depending on where it is installed, the oil filtration system, they are divided into three types: - through-flow filter, which passes through all the oil that the pump feeds into the engine. A pressure regulating by-pass valve is installed upstream of the filter to protect the gaskets with oil seals. If the filter element is too dirty, the valve directs oil flow past the filter, preventing oil starvation of the bearings. Keeps engine from failing due to lack of lubrication; - a partial-flow filter is mounted parallel to the main oil line and cleans only a portion of the oil that enters the engine. Gradually the whole volume of oil passes through the filter element, giving a fairly high cleaning efficiency. However, this method does not provide absolute protection of parts from chips and other abrasives; - the combination filter combines a full-flow and a partial-flow cleaning principle. It consists of two filter elements, one mounted parallel to the oil line and the other cut into it. This ensures maximum cleaning efficiency and long filter life. The filter elements are divided into two types according to their efficiency in removing fine impurities: coarse filters, which remove coarse impurities, and fine filters, which remove fine impurities. According to the design of the housing and the possibility of replacing the filter element, filters are divided into multiple (collapsible) and disposable (non-collapsible). Modern engines may use filters in the form of a cartridge, which is inserted into a special compartment. During operation, the oil is first routed to the filter and then through the oil channels to the interacting parts in the engine. This principle is used on all standard passenger cars. A settling filter (gravity filter) is a tank with a filter element and a settling tank in which impurities are deposited by gravity. The centrifugal filter operates similarly to the gravity filter, only dirt settles in it under the action of centrifugal force resulting from the rotation of the body

Author(s):  
Götz Fischer ◽  
Stefan Schmitz

In 2006, an automatic lube oil filtration system with an automatic backflushing filter and a centrifuge for railway engines was already presented at the ASME spring technical conference in Aachen. The technical benefit of a centrifuge compared to a cartridge filter is the ability to collect smaller particles. The power to drive the centrifuge comes from the engine oil pressure. This engine oil pressure is dependent from the engine speed. Many operating profiles of locomotives are showing low engine speed and load e.g. while waiting in switchyard and under arctic weather conditions the engines keep idling even during “downtime”. Under those conditions a centrifuge is ineffective or even out of operation.


2021 ◽  
Vol 35 (06) ◽  
pp. 2150102
Author(s):  
Ikram Ullah ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi ◽  
Habib M. Fardoun

Present attempt inspects the entropy analysis and melting effect in flow of hybrid nanomaterials consisting of CNTs nanoparticles and engine oil Flow is by a stretching cylinder. Formulation is accountable to the viscous dissipation, velocity slip and thermal radiation impacts. In order to estimate the disorder within the thermo-physical frame, second-order analysis has been used. The governing system with the imposed boundary condition is dimensionless via proper variables. Numerical outcomes are expressed graphically and analyzed. Comparison of hybrid nanomaterial, nanomaterials and regular liquid is expressed graphically. Outcomes indicate that the hybrid nanomaterials have great impact throughout the inspection than the ordinary nanomaterials.


2021 ◽  
Vol 13 (1) ◽  
pp. 68-77
Author(s):  
Igor Мarmut ◽  
◽  
Andriy Kashkanov ◽  
Vitaliy Kashkanov ◽  
◽  
...  

The article discusses the issues of modeling conditions for obtaining diagnostic information about complex objects. As an example, the study of the braking qualities of four-wheel drive cars on an inertial roller stand is considered. Diagnosing the technical condition of cars from the point of view of traffic safety is one of the most important problems. This is especially important for systems whose technical condition affects traffic safety: especially braking systems. Foreign and domestic experience testifies to the effectiveness of instrumental control. The diagnostic equipment includes roller stands, on which you can check the braking properties of cars. As shown by many studies, in particular, carried out at the Department of Technical Operation and Service of Automobiles, KhNADU (HADI), inertial stands provide more reliable information about the technical condition of the car. Such stands allow you to reproduce the real speed and thermal modes of the brakes (especially those equipped with ABS). To improve the accuracy of diagnosing a car on a roller stand, it is necessary to have an idea of the nature of the interaction of the car wheels with the rollers. The studies of wheel rolling on the stand rollers have been carried out by many authors since the 80s of the last century. However, all these studies were carried out on uniaxial stands and for mono-drive vehicles. Nowadays, a large number of passenger cars have four-wheel drive. Rolling of the wheels of such cars on rollers and their interaction has practically not been studied. Therefore, a return to the study of this issue is relevant. A power model of the system of interaction between the car and the stand has been developed, taking into account the design features of the stand and the design features of the car's suspension. The power model of the system under consideration contains the equilibrium equations of the body and two bridges and the equations of motion of the rollers and wheels of the car. Based on the results of the analysis of the acting forces in the "car-stand" system, the braking moments on the wheels M and the coefficients of the use of the load q during the braking tests of a 4x4 vehicle were determined. The obtained research results allowed to improve the theory of interaction of a car wheel with the rollers of an inertial diagnostic stand.


2013 ◽  
Vol 19 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Mohammad Khodagholi ◽  
Mohammad Hemmati ◽  
Ali Pour

The filtration efficiency for separating liquid paraffin (or water) from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR) comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (?P) were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16?m. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ?Ps and for ?P more than 1 bar is neither harmful nor helpful. The highest filtration rates at ?Ps higher than 1 bar were 170 and 248 ml/minute for 4 and 16?m respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm). The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.


2015 ◽  
Author(s):  
Logan Madacey Rapp ◽  
Erik Anderson ◽  
Jessica Pluhm ◽  
Martin J. Morris ◽  
Gregory E. Dale ◽  
...  

2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900 ◽  
Author(s):  
Jian Yong Feng ◽  
Jian Chun Zhang ◽  
Daxiang Yang

In this paper, PVA electrospun nanofiber was prepared on the surface of three different automobile engine oil filtration materials including polyester nonwoven, glass fiber nonwoven, and cotton pulp filtration paper. It was found that the substrate of cotton pulp filtration paper and the nanofiber layer had better adhesive effect. Then we A comparison of fiber diameter, pore diameter, filtration accuracy and pressure drop between the cotton pulp paper and nanofiber composite filtration material was then made. The results show that the nanofiber composite material had smaller pore diameter and filtration accuracy, higher pressure drop, and better oil filtration property. Additionally, the difference of pressure drop between the substrate and nanofiber composite material increased with increasing flow rate of experimental oil. The goal of this paper was use the electrospun nanofiber in the automobile engine oil filtration.


2014 ◽  
Vol 635-637 ◽  
pp. 532-536
Author(s):  
Pei Shu ◽  
Hong Xin Zhang ◽  
Ru Qin Xiao ◽  
Jin Zhu Shi

For the bush-burning problem in the course of the engine operation. Taking a certain kind of engine as reference, build a 3D geometric model of the engine-oil flow field in the ideal stable conditions with GAMBIT and conduct a simulation of it with FLUENT. It reveals that we can have an intuitive understanding of the flow state and pressure distribution of the engine-oil inside the clearance between the crankshaft main journal and crankshaft bearing as well as the rod journal and rod bearing which provides basis for a further refining of bearing lubrication system, improving the lubrication method and enhancing the efficiency of the lubrication.


2020 ◽  
Vol 26 (3) ◽  
pp. 301 ◽  
Author(s):  
K. R. Paton ◽  
M. H. Cake ◽  
D. J. Bird ◽  
I. C. Potter

The anadromous Geotria australis, one of only three lamprey species representing the early agnathan (jawless) stage of vertebrate evolution in Australia and New Zealand, is declining in abundance. Its adults were caught soon after they had entered rivers on their non-trophic upstream migration and maintained in laboratory tanks for 13–15 months through to spawning. As adult G. australis are susceptible to haemorrhagic septicaemia, they were treated prophylactically and maintained in 3-m3 aquaria supplied with a flow-through charcoal filtration system and UV steriliser. Air temperature and the light:dark regime were constantly adjusted to parallel those in the environment. Males developed the very large suctorial disc and gular pouch characteristic of maturity and both sexes matured at the same time as in the wild. While males frequently showed aggressive behaviour towards each other, the same male and female mated on several occasions. The male coiled around the female and, with his urogenital papilla close to the female’s cloaca, twisted and vibrated, leading to egg release. These eggs formed coagulated clusters as in the wild, with many progressing through to the eight-cell stage. Remarkably, numerous G. australis were still alive 95–392 days after the end of the short spawning period, and one male after a further 119 days. Postspawning survival would be facilitated inter alia by extensive proteolysis, reflected in a shortening of the body. The data in this paper emphasise that G. australis is a highly atypical lamprey and provides invaluable information for conserving this declining species.


Author(s):  
M. H. Al-Hajeri ◽  
A. Witry

Cylindrical or candle filters have been developed for cleaning the hot combustion gas streams upstream of the turbine in a combined cycle power plant. To obtain continues operation a periodic cleaning is necessary and the cleaning efficiency depends on the distribution of the filtration cake. Consequently uniform particle deposition on the filter element surface is desired. The flow around three filter elements in cross flow is investigated computationally using the commercial code FLUENT. Three filter elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the filter element.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 461 ◽  
Author(s):  
Etienne Harkemanne ◽  
Olivier Berten ◽  
Patrick Hendrick

In an aircraft engine, some pieces are describing a rotating movement. These parts are in contact with rotating and non-rotating parts through the bearings and gears. The different contact patches are lubricated with oil. During the lifetime of the engine, mechanical wear is produced between the contacts. This wear of the bearings and gears will produce some debris in the oil circuit of the engine. To ensure the effective operation of the aircraft engines, the debris monitoring sensors play a significant role. They detect and collect the debris in the oil. The analysis of the debris can give an indication of the overall health of the engine. The aim of the paper is to develop, design and model an oil test bench to simulate the oil lubrication circuit of an aircraft engine to test two different debris monitoring sensors. The methodology consists of studying the oil lubrication system of the aircraft engine. The first step is to build the oil test bench. Once the oil test bench is functional, tests are performed on the two debris monitoring sensors. A test plan is followed, three sizes of debris, like the type and sizes of debris found in the aircraft engine oil, are injected in the oil. The test parameters are the oil temperature, the oil flow rate and the mass of debris injected. Each time debris is injected, it is detected and caught by the two sensors. The test results given by the two sensors are similar to the mass debris injected into the oil circuit. The two sensors never detect the total mass of debris injected in the oil. On average, 55%–60% of the mass injected is detected and caught by the two sensors. The sensors are very efficient at detecting debris whose size corresponds to the design range parameters of the sensors, but the efficiency falls when detecting debris whose size lies outside this range.


Sign in / Sign up

Export Citation Format

Share Document