scholarly journals Effects of Portabella mushrooms on collagen-induced arthritis, inflammatory cytokines, and body composition in dilute brown non-agouti (DBA1) mice

2011 ◽  
Vol 1 (9) ◽  
pp. 279
Author(s):  
Sandra Peterson ◽  
Edralin A. Lucas ◽  
Djibril Traore ◽  
Lawrance Christopher ◽  
Christine French ◽  
...  

Background: Exotic mushrooms have long been used in Asia for treatment and/or prevention of chronic diseases due to their immunomodulatory properties. However, the health benefits of portabella mushrooms (PM) (brown Agaricus bisporous), on collagen-induced arthritis (CIA) and associated complications, (i.e. loss of lean mass, increased fat mass and inflammatory cytokines), have not been previously investigated.Methods: We investigated CIA pathogenesis, body composition and plasma levels of IL- 6, TNF-α and sICAM1 in DBA1 female mice fed either the AIN76 diet or the same diet fortified with 5% lyophilized PM (n=19-20/group). Ten mice/group were immunized with 100 µg bovine collagen type II on day 42 of the protocol, followed by 50 µg lipopolysaccharides on day 62, and euthanized on day 73-74. Cytokines were measured by ELISA.Results: Compared to baseline diet, PM had: no protective effect from CIA since all collagen-immunized mice developed severe edema, bone erosion, and mononuclear cell infiltration in paws. In mice with and those without CIA, feeding a PM-fortified diet resulted in higher percent of body fat than feeding the baseline diet (p<0.05). After CIA induction, PM provided the following beneficial effects: (a) a smaller reduction in lean mass and absolute thymus weight; (b) a higher fat mass loss; and (c) lower plasma TNF-α levels (p <0.05). PM-fortification did not alter plasma IL-6 and sICAM1 regardless of CIA status; but it increased in vitro IL-6 secretion by mitogen-treated spleen cells.Conclusion: Our data suggest that PM may reduce plasma TNF-α, attenuate lean mass loss and thymus atrophy associated with arthritis, and protect spleen cell function assessed by IL-6 secretion. However, PM-fortification did not attenuate overall CIA pathogenesis which may be due to lack of effect on plasma IL-6. Decreased TNF-α without alterations in IL-6 may reduce the risk of other conditions associated with chronic inflammation such as cardiovascular disease.Key words: portabella mushrooms, inflammatory cytokines, collagen-induced arthritis, body composition, TNF-α, IL-6, thymus, DBA1 mice.

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1826 ◽  
Author(s):  
Svea-Vivica Mathieu ◽  
Karina Fischer ◽  
Bess Dawson-Hughes ◽  
Gregor Freystaetter ◽  
Felix Beuschlein ◽  
...  

Obesity and sarcopenia are major causes of morbidity and mortality among seniors. Vitamin D deficiency is very common especially among seniors and has been associated with both muscle health and obesity. This study investigated if 25-hydroxyvitamin D (25(OH)D) status is associated with body composition and insulin resistance using baseline data of a completed RCT among relatively healthy community-dwelling seniors (271 seniors age 60+ years undergoing elective surgery for unilateral total knee replacement due to osteoarthritis). Cross-sectional analysis compared appendicular lean mass index (ALMI: lean mass kg/height m2) and fat mass index (FMI: fat mass kg/height m2) assessed by DXA and insulin resistance between quartiles of serum 25(OH)D concentration using multivariable linear regression adjusted for age, sex, smoking status, physical activity, and body mass index (BMI). Participants in the lowest serum 25(OH)D quartile (4.7–17.5 ng/mL) had a higher fat mass (9.3 kg/m2) compared with participants in the third (8.40 kg/m2; Q3 = 26.1–34.8 ng/mL) and highest (8.37 kg/m2; Q4 = 34.9–62.5 ng/mL) quartile (poverall = 0.03). Higher serum 25(OH)D quartile status was associated with higher insulin sensitivity (poverall = 0.03) and better beta cell function (p = 0.004). Prevalence of insulin resistance tended to be higher in the second compared with the highest serum 25(OH)D quartile (14.6% vs. 4.8%, p = 0.06). Our findings suggest that lower serum 25(OH)D status may be associated with greater fat mass and impaired glucose metabolism, independent of BMI and other risk factors for diabetes.


Author(s):  
Mahdi Zavvar ◽  
Mohsen Abdolmaleki ◽  
Hamid Farajifard ◽  
Farshid Noorbakhsh ◽  
Kayhan Azadmanesh ◽  
...  

Regulatory T cells (Tregs) play a major role in the prevention of autoimmune diseases. Transfer of Foxp3 gene into conventional T cells converts their phenotype to regulatory T cells. Therefore, the question arises as to whether adoptively transferred in vitro differentiated Treg cells specific for a locally expressed antigen might have better inhibitory effects on the progression of the disease as compared with antigen-nonspecific T reg cells. Herein, we investigated the therapeutic potential of primed and unprimed retrovirus mediated Foxp3-overexpression T cells following intravenously injected of these cells into affected rats with collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. Our analyses demonstrate that systemic administration of collagen II primed Foxp3-transduced T cells could markedly ameliorate CIA inflammatory responses at clinical (p<0.0014) and pathological exchanges including cellular infiltration (p=0.002), bone erosion (p=0.0013) and synovial hyperplasia (p=0.002). In contrast, collagen II unprimed Foxp3-transduced T cells like as collagen II primed or unprimed GFP-transduced T cells did not reveal any beneficial effects on arthritis features as compared with untreated group (p>0.05). Therefore, we believe that collagen II primed Foxp3-transduced T cells are interacting locally and systemically with immune cells which reveled with decreasing of T cells infiltration into joints along with specific CII IgG production. Considering the results described here, it appears that the using patients' T cells which previously exposed to specific antigens may have more effective therapeutic advantage in the production of induced regulatory T cells in the treatment of arthritis.


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Kun-Yun Yeh ◽  
Hang Huong Ling ◽  
Shu-Hang Ng ◽  
Cheng-Hsu Wang ◽  
Pei-Hung Chang ◽  
...  

Background: This study investigates whether the appendicular skeletal muscle index (ASMI) was an independent prognostic predictor for patients with locally advanced head and neck cancer (LAHNC) receiving concurrent chemoradiotherapy (CCRT) and whether there were any differences in lean mass loss in different body regions during CCRT. Methods: In this prospective study, we analyzed the clinicopathological variables and the total body composition data before and after treatment. The factors associated with the 2-year recurrence-free survival rate (RFSR) were analyzed via logistic regression analysis. Results: A total of 98 patients were eligible for analysis. The body weight, body mass index, and all parameters of body composition significantly decreased after CCRT. The pretreatment ASMI was the only independent prognostic factor for predicting the 2-year RFSR (hazard ratio, 0.235; 95% confidence interval, 0.062–0.885; p = 0.030). There was at least 5% reduction in total lean and fat mass (p < 0.001); however, the highest lean mass loss was observed in the arms (9.5%), followed by the legs (7.2%), hips (7.1%), waist (4.7%), and trunk (3.6%). Conclusions: The pretreatment ASMI was the only independent prognostic predictor for the 2-year RFSR of LAHNC patients undergoing CCRT. Asynchronous loss of lean mass may be observed in different body parts after CCRT.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Di Hua ◽  
Jie Yang ◽  
Qinghai Meng ◽  
Yuanyuan Ling ◽  
Qin Wei ◽  
...  

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disease. Soufeng sanjie formula (SF), which is composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch), scorpion (dried body of Buthus martensii Karsch), astragali radix (dried root of Astragalus membranaceus (Fisch.) Bge), and black soybean seed coats (seed coats of Glycine max (L.) Merr), is a traditional Chinese prescription for treating RA. However, the mechanism of SF in treating RA remains unclear. This study was aim to investigate the anti-arthritic effects of SF in a collagen-induced arthritis (CIA) mouse model and explore the mechanism by which SF alleviates arthritis in CIA mice. Methods For in vivo studies, female DBA/1J mice were used to establish the CIA model, and either SF (183 or 550 mg/kg/day) or methotrexate (MTX, 920 mg/kg, twice/week) was orally administered to the mice from the day of arthritis onset. After administration for 30 days, degree of ankle joint destruction and serum levels of IgG and inflammatory cytokines were determined. The balance of Th17/Treg cells in the spleen and lymph nodes was analyzed using flow cytometry. Moreover, the expression levels of retinoic acid receptor-related orphan nuclear receptor (ROR) γt and phosphorylated STAT3 (pSTAT3, Tyr705) in the spleen were detected by immunohistochemistry. Furthermore, the effect of SF on Th17 cells differentiation in vitro was investigated in CD4+ T cells under Th17 polarization conditions. Results SF decreased the arthritis score, ameliorated paw swelling, and reduced cartilage loss in the joint of CIA mice. In addition, SF decreased the levels of bovine collagen-specific IgG in sera of CIA mice. SF decreased the levels of inflammatory cytokines (TNF-α, IL-6, and IL-17A) and increased the level of IL-10 both in the sera and the joint of CIA mice. Moreover, SF treatment rebalanced the Th17/Treg ratio in the spleen and lymph nodes of CIA mice. SF also reduced the expression levels of ROR γt and pSTAT3 (Tyr705) in the spleen of CIA mice. In vitro, SF treatment reduced Th17 cell generation and IL-17A production and inhibited the expression of RORγt, IRF4, IL-17A, and pSTAT3 (Tyr705) under Th17 polarization conditions. Conclusions Our results suggest that SF exhibits anti-arthritic effects and restores Th17/Treg homeostasis in CIA mice by inhibiting Th17 cell differentiation.


2003 ◽  
Vol 62 (2) ◽  
pp. 521-528 ◽  
Author(s):  
J. C. K. Wells

Body composition in children is of increasing interest within the contexts of childhood obesity, clinical management of patients and nutritional programming as a pathway to adult disease. Energy imbalance appears to be common in many disease states; however, body composition is not routinely measured in patients. Traditionally, clinical interest has focused on growth or nutritional status, whereas more recent studies have quantified fat mass and lean mass. The human body changes in proportions and chemical composition during childhood and adolescence. Most of the weight gain comprises lean mass rather than fat. In general, interest has focused on percentage fat, and less attention has been paid to the way in which lean mass varies within and between individuals. In the general population secular trends in BMI have been widely reported, indicating increasing levels of childhood obesity, which have been linked to reduced physical activity. However, lower activity levels may potentially lead not only to increased fatness, but also to reduced lean mass. This issue merits further investigation. Diseases have multiple effects on body composition and may influence fat-free mass and/or fat mass. In some diseases both components change in the same direction, whereas in other diseases, the changes are contradictory and may be concealed by relatively normal weight. Improved techniques are required for clinical evaluations. Both higher fatness and reduced lean mass may represent pathways to an increased risk of adult disease.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Christine Haedtke ◽  
Debra K Moser ◽  
Susan J Pressler ◽  
Terry Lennie

Introduction: As NYHA Class increases from I (ordinary physical activity does not cause undue fatigue), to Class IV (Symptoms are present while at rest) physical limitations become severe. It has previously been shown that HF patients have increased fat within the muscle thus decreasing exercise performance and tolerance. It is unclear if all NYHA classes are similarly affected. Hypothesis: HF patients with NYHA class III-IV will have more fat and less lean mass than those with NYHA class I-II. Methods: Secondary data analysis using cross sectional data from N=253. The parent study was a multicenter study about nutrition and body composition among patients with HF (preserved or reduced, and NYHA classification I-IV) who had been on a stable medication regimen, able to participate in dual-energy X-ray absorptiometry scan and/or BodPod body composition measures, able to read and speak English, and had no cognitive impairment. Women and men were analyzed separately due to known differences in fat and lean mass. Results: Table 1: Sample characteristic’s Testing the hypothesis using 2-way ANOVA and comparing the percentage of body weight that is lean and fat mass in NYHA class I-II vs III-IV found the interaction of gender and NYHA was not significant in either % lean or %fat (p=0.221, 0.190 respectively). NYHA class by itself was not significant (p=0.067) in %lean but was significant in %fat (p=0.046). Gender was significant in both %lean and %fat with men having 9.6% less fat (1.139 SE) and 9.8% more lean mass (1.066 SE) (p≤0.001). NYHA class III-IV had 2.3% (1.139 SE) more fat than those in NYHA class I-II. The R squared was 0.265 and adjusted R squared was 0.256. Conclusions: Part of our hypothesis was correct in that NYHA class III-IV had more fat mass than those in class I-II, but no difference was found in lean. This is an unexpected finding as healthy people gain fat mass while losing lean mass as they age. Additional studies are needed to further examine this result.


Author(s):  
Thunyaporn Phungviwatnikul ◽  
Anne H Lee ◽  
Sara E Belchik ◽  
Jan S Suchodolski ◽  
Kelly S Swanson

Abstract Canine obesity is associated with reduced lifespan and metabolic dysfunction, but can be managed by dietary intervention. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal microbiota and metabolites of overweight dogs. Twelve spayed female dogs [age: 5.5±1.1 yr; body weight (BW): 14.8±2.0 kg, body condition score (BCS): 7.9±0.8] were fed a HPHF diet during a 4-wk baseline phase to maintain BW. After baseline (wk 0), dogs were first fed 80% of baseline intake and then adjusted to target 1.5% weekly weight loss for 24 wk. Body composition using dual-energy x-ray absorptiometry and blood samples (wk 0, 6, 12, 18, 24), voluntary physical activity (wk 0, 7, 15, 23), and fresh fecal samples for microbiota and metabolite analysis (wk 0, 4, 8, 12, 16, 20, 24) were measured over time. Microbiota data were analyzed using QIIME 2. All data were analyzed statistically over time using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW and had 1.43±0.73% weight loss per wk. BCS decreased (P&lt;0.0001) by 2.7 units, fat mass decreased (P&lt;0.0001) by 3.1 kg, and fat percentage decreased (P&lt;0.0001) by 3.1 kg and 11.7% with weight loss. Many serum metabolites and hormones were altered, with triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreasing (P&lt;0.05) with weight loss. Relative abundances of fecal Bifidobacterium, Coriobacteriaceae UCG-002, undefined Muribaculaceae, Allobaculum, Eubacterium, Lachnospira, Negativivibacillus, Ruminococcus gauvreauii group, uncultured Erysipelotrichaceae, and Parasutterella increased (P&lt;0.05), whereas Prevotellaceae Ga6A1 group, Catenibacterium, Erysipelatoclostridium, Fusobacterium, Holdemanella, Lachnoclostridium, Lactobacillus, Megamonas, Peptoclostridium, Ruminococcus gnavus group, and Streptococcus decreased (P&lt;0.01) with weight loss. Despite the number of significant changes, a state of dysbiosis was not observed in overweight dogs. Fecal ammonia and secondary bile acids decreased, while fecal valerate increased with weight loss. Several correlations between gut microbial taxa and biological parameters were observed. Our results suggest that restricted feeding of a HPHF diet and weight loss promotes fat mass loss, minimizes lean mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal microbiota phylogeny and activity in overweight dogs.


2013 ◽  
Vol 26 (1) ◽  
pp. 37-48 ◽  
Author(s):  
S.M. Nanjundaiah ◽  
J.P. Stains ◽  
K.D. Moudgil

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, bone erosion, and cartilage destruction in the joints. It is increasingly being realized that inflammation might play an important role in inducing bone damage in arthritis. However, there is limited validation of this concept in vivo in well-controlled experimental conditions. We addressed this issue using the adjuvant arthritis (AA) model of RA. In AA, the draining lymph nodes are the main sites of activation of pathogenic leukocytes, which then migrate into the joints leading to the induction of arthritis. We tested the temporal kinetics of mediators of bone damage [e.g., receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) and osteopontin (OPN)] and inflammation (pro-inflammatory cytokines and chemokines) in the draining lymph node cells (LNC) at different phases of AA, and then examined their inter-relationships. Our study revealed that, together with cytokines/chemokines, some of the mediators of bone remodeling are also produced in LNC. Various cytokines/chemokines showed distinct kinetics of expression as well as patterns of correlation with mediators of bone remodeling at different phases of the disease. Pro-inflammatory cytokines such as TNF-α are known to play an important role in bone damage. Interestingly, there was a positive correlation between TNF-α and RANKL, between RANKL and each of the 3 chemokines tested (RANTES, MIP-1α, and GRO/KC), and between TNF-α and RANTES. Our results in the AA model lend support to the concept of osteo-immune crosstalk during the course of autoimmune arthritis.


Sign in / Sign up

Export Citation Format

Share Document