scholarly journals Analysis of workability, mechanical strength and durability by the FT-IR method of concrete based on silica-limestone sand preserved in aggressive environments

2021 ◽  
Vol 16 (59) ◽  
pp. 566-579
Author(s):  
Hima Abdelkader ◽  
Tarek Djedid ◽  
Mohammed Mani ◽  
Abdelhamid Guettala

The interest of using combined sand of equal percentage of silica and limestone becomes evident in the formulation of compacted concrete in several previous works around the world, due to the formidable percentage of fines that improves the compactness and increases various mechanical resistances, which produces a more durable construction against different probable aggressions. This paper examines the effect of using this type of sand on workability, compressive strength, flexural strength, and splitting tensile strength. A durability test was consulted using infrared spectroscopy to assess diverse types of hydration products formed. Found results clearly show the advantages of using sand with silica and limestone grains (50/50)% in ordinary concrete infected by aggressive water. There is also an improvement in compactness, different mechanical resistances, and a reduction in the formation of harmful hydration products.

2017 ◽  
Vol 10 (1) ◽  
pp. 122-140
Author(s):  
A. L. SARTORI ◽  
L. M. PINHEIRO ◽  
R. M. DA SILVA ◽  
S. B. FREITAS ◽  
T. G. CESAR

Abstract This paper describes the adherence behavior of a structural lightweight concrete with EPS beads (SLCEB) in a monotonic loading, based in a bibliographic review and in pull-out tests. The results of these SLCEB tests were compared with those of an ordinary concrete (OC) and with the values based in indications of the Brazilian code ABNT NBR 6118:2014 - Design of concrete structures. The pull-out tests of two batches of SLCEB and one of OC were analyzed, in a total of 60 tests. Mechanical characteristics were determined too, such as: compressive strength and tensile strength in split cylinder test. The calculated results according to the above mentioned standard were very different from those obtained in the tests, indicating that the theoretical values are more conservative than the experimental ones. It was also verified that it is possible to use SLCEB in structures with respect to the adequate adherence of reinforcement in the concrete.


Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


2017 ◽  
Vol 7 (6) ◽  
pp. 2210-2214 ◽  
Author(s):  
A. Saand ◽  
M. A. Keerio ◽  
D. K. Bangwar

Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan) is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.


2011 ◽  
Vol 418-420 ◽  
pp. 441-444 ◽  
Author(s):  
Feng Lan Li ◽  
Yan Zeng ◽  
Chang Yong Li

Due to many different characteristics such as irregular polygon particle with pointed edges, rough surface and larger content of stone powder, machine-made sand has ignorable effects on the properties of concrete. As the basis for the design of concrete structures, the relations among the basic mechanical properties of concrete such as compressive strength, tensile strength, flexural strength and elastic modulus should be clearly understood. This paper summarizes the test data from the published references, and discusses the relations among these properties by statistical analyses compared with those of ordinary concrete. The results show that the axial compressive strength and the tensile strength can be prospected by the same formulas of ordinary concrete specified in current Chinese design code, but the prospected tensile strength should multiply a reducing coefficient when the strength grade of concrete is lower than C30. The elastic modulus of concrete with machine-made sand is larger than that of ordinary concrete, which should be prospect by the formula in this paper. Meanwhile, the formula of flexural strength is suggested.


Author(s):  
Mahmood F. Ahmed ◽  
Wasan I. Khalil ◽  
Qais J. Frayyeh

Recently, sustainability and ecological related problems have attracted more attention around the world. The construction sector incorporates directly and indirectly in global warming, natural resources depletion, and environmental pollution. This study aims, firstly; to identify the optimum mix of metakaolin (MK) geopolymer concrete required to achieve high compressive strength with respect to the concentration of the alkaline solution and curing system. Secondly, to reduce the impact of brick waste on the environment, by producing geopolymer concrete based on blended MK and waste clay brick powder (WBP). The compressive strength, splitting tensile strength and flexural strength of MK-based geopolymer concrete specimens were studied. Different contents of waste clay brick powder (WBP) (0%, 10%, 15%, and 20%) as a replacement by weight of (MK) were investigated. The results appear that it is possible to produce MK-based geopolymer concrete with a compressive strength of 44.03 MPa, while it was 34.76 MPa at 28 days for specimens with 15% WBP replacement of main source binder. Finally, it could be concluded that green moderate strength geopolymer concrete can be produced and used in different civil engineering applications.


2013 ◽  
Vol 438-439 ◽  
pp. 15-19
Author(s):  
Chun Jie Liu ◽  
Chun Yan Jia ◽  
Chang Yong Li

Although the machine-made sand was widely used for concrete in recent years in China, it was short of studies on the relations among the basic mechanical properties of fly-ash concrete with machine-made sand (MSFAC). However, these relations such as the compressive strength, the tensile strength and the elastic modulus with the cubic compressive strength (i.e. strength grade) are the basis of design for concrete structures. This paper summarizes the test data from the published references, and discusses the relations among these properties by statistical analyses compared with those of ordinary concrete. The results show that only the tensile strength of MSFAC can be safely forecasted by the same formula of ordinary concrete specified in current Chinese design code. When the strength grade is higher than C45, the axial compressive strength of MSFAC is largely forecasted by the formula of ordinary concrete. The elastic modulus of MSFAC is larger than that of ordinary concrete, which should be prospect by the formula in this paper. This work gives out some cautions for the proper use of the MSFAC in concrete structures.


2018 ◽  
Vol 181 ◽  
pp. 01002
Author(s):  
Sofwan ◽  
Lawalenna Samang ◽  
Tri Harianto ◽  
Achmad Bakri Muhidin

This study is intended to increase the compressive strength and durability of subgrade with lime, on high plasticity expansive soil. The composition of the stabilizing agent used; composition-1 is soil + 5% slakelime, composition-2 is soil + 5% quicklime, and composition-3 is soil + 5% (quicklime with rosin and iron oxide activation). The testing includes swelling test, durability test, and CBR test. That the performance of stabilization with the composition-3 was able to reduce the swelling potential on 3th day by 93.89%, decrease the volume increase potential by 93.09% and decrease the weight increase potential by 94.00% in the 3 periods of wet-dry cycle, and increase the CBR value by 758.62%. That the activation of gum rosin and iron oxide on quicklime can significantly improve the performance of lime for stabilization of expansive clay as subgrade of highway.


Transfer of tyre rubber suit a tremendous difficulty in India step by step. Analysts are attempting to utilize waste rubber in structural building venture from numerous days back. When coarse aggregate was replaced with 20% chipped rubber it was found that the optimum replacement is5% but still there is a deficit in some strength from conventional concrete. This research programme tries to minimise this gap by adding extra 5% micro silica of the weight of cement and also by replacing 40% of cement by GGBS. Here cubes, cylinders, and prisms were casted to test compressive strength, tensile strength, flexural strength, and durability against heat and were observed after 28 days and 56 days


Author(s):  
Aman Sharma

Abstract: The wollastonite mineral are the main source of solid-state reaction from limestone and silica sand. Wollastonite is used as replacement of both sand and cement depending on size of wollastonite. Present study will provide better understanding of mechanical and durability properties of concrete in which cement is partially replaced with wollastonite. The present paper would contribute to the efforts being made in the field of concrete technology towards development of concretes possessing good strength and durability properties along with economic and ecological advantage. Based on the study, valuable advice will be given for concrete structures. It was found that with increase in amount of wollastonite, in concrete with workability of concrete decreases. It was also found that initial day’s strength is less for wollastonite concrete compare to control mix, but as the age increases they show good improvement in strength due to pozzalanic reaction. Optimum dosage is observed to be 15% WP which shows more strength compared to control mix. Keywords: wollastonite mineral, workability, compressive strength, split tensile strength.


Neutron ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 73-81
Author(s):  
Umi Latifah ◽  
Syafwandi

Plastic waste is the largest contributor in the world and belongs to the class of materials that can not be broken down by organisms (non-bio-degradable) and durable (persistent) which does not rot. It can be seen directly from this waste that is lightweight and not easily deformed. Terephthalate polyethylene plastic types are widely used as mineral water bottles can be recycled as coarse aggregate for lightweight concrete manufacture. In this study, carried out the loading test compressive strength. To determine the properties of lightweight concrete, tested the modulus of elasticity, compressive strength, and strong Pull. The physical and mechanical nature of light concrete in the use of waste plastics PET instead of coarse aggregate must be following existing regulations. The compressive strength of concrete with the highest in the age of 28 daycare that is equal to 23.973 MPa. The highest tensile strength value contained in the concrete to the age of 28-day care is equal to 2,782Mpa.


Sign in / Sign up

Export Citation Format

Share Document